|
Sergi Garcia Bordils, Dimosthenis Karatzas and Marçal Rusiñol. 2024. STEP – Towards Structured Scene-Text Spotting. Winter Conference on Applications of Computer Vision.883–892.
Abstract: We introduce the structured scene-text spotting task, which requires a scene-text OCR system to spot text in the wild according to a query regular expression. Contrary to generic scene text OCR, structured scene-text spotting seeks to dynamically condition both scene text detection and recognition on user-provided regular expressions. To tackle this task, we propose the Structured TExt sPotter (STEP), a model that exploits the provided text structure to guide the OCR process. STEP is able to deal with regular expressions that contain spaces and it is not bound to detection at the word-level granularity. Our approach enables accurate zero-shot structured text spotting in a wide variety of real-world reading scenarios and is solely trained on publicly available data. To demonstrate the effectiveness of our approach, we introduce a new challenging test dataset that contains several types of out-of-vocabulary structured text, reflecting important reading applications of fields such as prices, dates, serial numbers, license plates etc. We demonstrate that STEP can provide specialised OCR performance on demand in all tested scenarios.
|
|
|
Lluis Pere de las Heras, Ahmed Sheraz, Marcus Liwicki, Ernest Valveny and Gemma Sanchez. 2014. Statistical Segmentation and Structural Recognition for Floor Plan Interpretation. IJDAR, 17(3), 221–237.
Abstract: A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.
|
|
|
Alicia Fornes, Josep Llados and Gemma Sanchez. 2005. Staff and graphical primitive segmentation in old handwritten music scores.
|
|
|
Andres Mafla, Rafael S. Rezende, Lluis Gomez, Diana Larlus and Dimosthenis Karatzas. 2021. StacMR: Scene-Text Aware Cross-Modal Retrieval. IEEE Winter Conference on Applications of Computer Vision.2219–2229.
|
|
|
Joan Mas, Gemma Sanchez and Josep Llados. 2009. SSP: Sketching slide Presentations, a Syntactic Approach. 8th IAPR International Workshop on Graphics Recognition.
Abstract: The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.
|
|
|
Joan Mas, Gemma Sanchez and Josep Llados. 2010. SSP: Sketching slide Presentations, a Syntactic Approach. Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers. Springer Berlin Heidelberg, 118–129. (LNCS.)
Abstract: The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2014. Spotting Symbol Using Sparsity over Learned Dictionary of Local Descriptors. 11th IAPR International Workshop on Document Analysis and Systems.156–160.
Abstract: This paper proposes a new approach to spot symbols into graphical documents using sparse representations. More specifically, a dictionary is learned from a training database of local descriptors defined over the documents. Following their sparse representations, interest points sharing similar properties are used to define interest regions. Using an original adaptation of information retrieval techniques, a vector model for interest regions and for a query symbol is built based on its sparsity in a visual vocabulary where the visual words are columns in the learned dictionary. The matching process is performed comparing the similarity between vector models. Evaluation on SESYD datasets demonstrates that our method is promising.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2016. Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary. Recent Trends in Image Processing and Pattern Recognition.
|
|
|
Marçal Rusiñol, Dimosthenis Karatzas and Josep Llados. 2013. Spotting Graphical Symbols in Camera-Acquired Documents in Real Time. 10th IAPR International Workshop on Graphics Recognition.
Abstract: In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time.
|
|
|
Marçal Rusiñol, Dimosthenis Karatzas and Josep Llados. 2014. Spotting Graphical Symbols in Camera-Acquired Documents in Real Time. In Bart Lamiroy and Jean-Marc Ogier, eds. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 3–10. (LNCS.)
Abstract: In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time.
|
|