|
Ernest Valveny and Enric Marti. 1999. Application of deformable template matching to symbol recognition in hand-written architectural draw. Proceedings of the Fifth International Conference on. Bangalore (India).
Abstract: We propose to use deformable template matching as a new approach to recognize characters and lineal symbols in hand-written line drawings, instead of traditional methods based on vectorization and feature extraction. Bayesian formulation of the deformable template matching allows combining fidelity to the ideal shape of the symbol with maximum flexibility to get the best fit to the input image. Lineal nature of symbols can be exploited to define a suitable representation of models and the set of deformations to be applied to them. Matching, however, is done over the original binary image to avoid losing relevant features during vectorization. We have applied this method to hand-written architectural drawings and experimental results demonstrate that symbols with high distortions from ideal shape can be accurately identified.
|
|
|
Ernest Valveny and Enric Marti. 1999. Recognition of lineal symbols in hand-written drawings using deformable template matching. Proceedings of the VIII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes.
|
|
|
Ernest Valveny and Enric Marti. 1997. Dimensions analysis in hand-drawn architectural drawings. (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis. CVC-UAB, 90–91.
|
|
|
Ernest Valveny, Ricardo Toledo, Ramon Baldrich and Enric Marti. 2002. Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching. Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002.502–507.
|
|
|
Lluis Pere de las Heras, Ahmed Sheraz, Marcus Liwicki, Ernest Valveny and Gemma Sanchez. 2014. Statistical Segmentation and Structural Recognition for Floor Plan Interpretation. IJDAR, 17(3), 221–237.
Abstract: A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.
|
|
|
Palaiahnakote Shivakumara, Anjan Dutta, Trung Quy Phan, Chew Lim Tan and Umapada Pal. 2011. A Novel Mutual Nearest Neighbor based Symmetry for Text Frame Classification in Video. PR, 44(8), 1671–1683.
Abstract: In the field of multimedia retrieval in video, text frame classification is essential for text detection, event detection, event boundary detection, etc. We propose a new text frame classification method that introduces a combination of wavelet and median moment with k-means clustering to select probable text blocks among 16 equally sized blocks of a video frame. The same feature combination is used with a new Max–Min clustering at the pixel level to choose probable dominant text pixels in the selected probable text blocks. For the probable text pixels, a so-called mutual nearest neighbor based symmetry is explored with a four-quadrant formation centered at the centroid of the probable dominant text pixels to know whether a block is a true text block or not. If a frame produces at least one true text block then it is considered as a text frame otherwise it is a non-text frame. Experimental results on different text and non-text datasets including two public datasets and our own created data show that the proposed method gives promising results in terms of recall and precision at the block and frame levels. Further, we also show how existing text detection methods tend to misclassify non-text frames as text frames in term of recall and precision at both the block and frame levels.
|
|
|
Salvatore Tabbone and Oriol Ramos Terrades. 2014. An Overview of Symbol Recognition. In D. Doermann and K. Tombre, eds. Handbook of Document Image Processing and Recognition. Springer London, 523–551.
Abstract: According to the Cambridge Dictionaries Online, a symbol is a sign, shape, or object that is used to represent something else. Symbol recognition is a subfield of general pattern recognition problems that focuses on identifying, detecting, and recognizing symbols in technical drawings, maps, or miscellaneous documents such as logos and musical scores. This chapter aims at providing the reader an overview of the different existing ways of describing and recognizing symbols and how the field has evolved to attain a certain degree of maturity.
Keywords: Pattern recognition; Shape descriptors; Structural descriptors; Symbolrecognition; Symbol spotting
|
|
|
Jon Almazan, Ernest Valveny and Alicia Fornes. 2011. Deforming the Blurred Shape Model for Shape Description and Recognition. In Jordi Vitria, Joao Miguel Raposo and Mario Hernandez, eds. 5th Iberian Conference on Pattern Recognition and Image Analysis. Berlin, Springer-Verlag, 1–8. (LNCS.)
Abstract: This paper presents a new model for the description and recognition of distorted shapes, where the image is represented by a pixel density distribution based on the Blurred Shape Model combined with a non-linear image deformation model. This leads to an adaptive structure able to capture elastic deformations in shapes. This method has been evaluated using thee different datasets where deformations are present, showing the robustness and good performance of the new model. Moreover, we show that incorporating deformation and flexibility, the new model outperforms the BSM approach when classifying shapes with high variability of appearance.
|
|
|
Lluis Pere de las Heras and Gemma Sanchez. 2011. And-Or Graph Grammar for Architectural Floorplan Representation, Learning and Recognition. A Semantic, Structural and Hierarchical Model. 5th Iberian Conference on Pattern Recognition and Image Analysis.17–24.
Abstract: This paper presents a syntactic model for architectural floor plan interpretation. A stochastic image grammar over an And-Or graph is inferred to represent the hierarchical, structural and semantic relations between elements of all possible floor plans. This grammar is augmented with three different probabilistic models, learnt from a training set, to account the frequency of that relations. Then, a Bottom-Up/Top-Down parser with a pruning strategy has been used for floor plan recognition. For a given input, the parser generates the most probable parse graph for that document. This graph not only contains the structural and semantic relations of its elements, but also its hierarchical composition, that allows to interpret the floor plan at different levels of abstraction.
|
|
|
Marçal Rusiñol, David Aldavert, Dimosthenis Karatzas, Ricardo Toledo and Josep Llados. 2011. Interactive Trademark Image Retrieval by Fusing Semantic and Visual Content. Advances in Information Retrieval. In P. Clough and 6 others, eds. 33rd European Conference on Information Retrieval. Berlin, Springer, 314–325. (LNCS.)
Abstract: In this paper we propose an efficient queried-by-example retrieval system which is able to retrieve trademark images by similarity from patent and trademark offices' digital libraries. Logo images are described by both their semantic content, by means of the Vienna codes, and their visual contents, by using shape and color as visual cues. The trademark descriptors are then indexed by a locality-sensitive hashing data structure aiming to perform approximate k-NN search in high dimensional spaces in sub-linear time. The resulting ranked lists are combined by using the Condorcet method and a relevance feedback step helps to iteratively revise the query and refine the obtained results. The experiments demonstrate the effectiveness and efficiency of this system on a realistic and large dataset.
|
|