|
Dimosthenis Karatzas and 12 others. 2015. ICDAR 2015 Competition on Robust Reading. 13th International Conference on Document Analysis and Recognition ICDAR2015.1156–1160.
|
|
|
Lluis Gomez and Dimosthenis Karatzas. 2015. Object Proposals for Text Extraction in the Wild. 13th International Conference on Document Analysis and Recognition ICDAR2015.206–210.
Abstract: Object Proposals is a recent computer vision technique receiving increasing interest from the research community. Its main objective is to generate a relatively small set of bounding box proposals that are most likely to contain objects of interest. The use of Object Proposals techniques in the scene text understanding field is innovative. Motivated by the success of powerful while expensive techniques to recognize words in a holistic way, Object Proposals techniques emerge as an alternative to the traditional text detectors. In this paper we study to what extent the existing generic Object Proposals methods may be useful for scene text understanding. Also, we propose a new Object Proposals algorithm that is specifically designed for text and compare it with other generic methods in the state of the art. Experiments show that our proposal is superior in its ability of producing good quality word proposals in an efficient way. The source code of our method is made publicly available
|
|
|
Anguelos Nicolaou, Andrew Bagdanov, Marcus Liwicki and Dimosthenis Karatzas. 2015. Sparse Radial Sampling LBP for Writer Identification. 13th International Conference on Document Analysis and Recognition ICDAR2015.716–720.
Abstract: In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.
|
|
|
Suman Ghosh, Lluis Gomez, Dimosthenis Karatzas and Ernest Valveny. 2015. Efficient indexing for Query By String text retrieval. 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015.1236–1240.
Abstract: This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings.
|
|
|
J.Kuhn and 10 others. 2015. Advancing Physics Learning Through Traversing a Multi-Modal Experimentation Space. Workshop Proceedings on the 11th International Conference on Intelligent Environments.373–380.
Abstract: Translating conceptual knowledge into real world experiences presents a significant educational challenge. This position paper presents an approach that supports learners in moving seamlessly between conceptual learning and their application in the real world by bringing physical and virtual experiments into everyday settings. Learners are empowered in conducting these situated experiments in a variety of physical settings by leveraging state of the art mobile, augmented reality, and virtual reality technology. A blend of mobile-based multi-sensory physical experiments, augmented reality and enabling virtual environments can allow learners to bridge their conceptual learning with tangible experiences in a completely novel manner. This approach focuses on the learner by applying self-regulated personalised learning techniques, underpinned by innovative pedagogical approaches and adaptation techniques, to ensure that the needs and preferences of each learner are catered for individually.
|
|
|
Lluis Pere de las Heras, Ernest Valveny and Gemma Sanchez. 2013. Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies. 10th IAPR International Workshop on Graphics Recognition.
|
|
|
Suman Ghosh and Ernest Valveny. 2015. Query by String word spotting based on character bi-gram indexing. 13th International Conference on Document Analysis and Recognition ICDAR2015.881–885.
Abstract: In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets
|
|
|
R. Bertrand, Oriol Ramos Terrades, P. Gomez-Kramer, P. Franco and Jean-Marc Ogier. 2015. A Conditional Random Field model for font forgery detection. 13th International Conference on Document Analysis and Recognition ICDAR2015.576–580.
Abstract: Nowadays, document forgery is becoming a real issue. A large amount of documents that contain critical information as payment slips, invoices or contracts, are constantly subject to fraudster manipulation because of the lack of security regarding this kind of document. Previously, a system to detect fraudulent documents based on its intrinsic features has been presented. It was especially designed to retrieve copy-move forgery and imperfection due to fraudster manipulation. However, when a set of characters is not present in the original document, copy-move forgery is not feasible. Hence, the fraudster will use a text toolbox to add or modify information in the document by imitating the font or he will cut and paste characters from another document where the font properties are similar. This often results in font type errors. Thus, a clue to detect document forgery consists of finding characters, words or sentences in a document with font properties different from their surroundings. To this end, we present in this paper an automatic forgery detection method based on document font features. Using the Conditional Random Field a measurement of probability that a character belongs to a specific font is made by comparing the character font features to a knowledge database. Then, the character is classified as a genuine or a fake one by comparing its probability to belong to a certain font type with those of the neighboring characters.
|
|
|
Lluis Pere de las Heras, Oriol Ramos Terrades, Josep Llados, David Fernandez and Cristina Cañero. 2015. Use case visual Bag-of-Words techniques for camera based identity document classification. 13th International Conference on Document Analysis and Recognition ICDAR2015.721–725.
Abstract: Nowadays, automatic identity document recognition, including passport and driving license recognition, is at the core of many applications within the administrative and service sectors, such as police, hospitality, car renting, etc. In former years, the document information was manually extracted whereas today this data is recognized automatically from images obtained by flat-bed scanners. Yet, since these scanners tend to be expensive and voluminous, companies in the sector have recently turned their attention to cheaper, small and yet computationally powerful scanners: the mobile devices. The document identity recognition from mobile images enclose several new difficulties w.r.t traditional scanned images, such as the loss of a controlled background, perspective, blurring, etc. In this paper we present a real application for identity document classification of images taken from mobile devices. This classification process is of extreme importance since a prior knowledge of the document type and origin strongly facilitates the subsequent information extraction. The proposed method is based on a traditional Bagof-Words in which we have taken into consideration several key aspects to enhance recognition rate. The method performance has been studied on three datasets containing more than 2000 images from 129 different document classes.
|
|
|
Lluis Pere de las Heras, Oriol Ramos Terrades and Josep Llados. 2015. Attributed Graph Grammar for floor plan analysis. 13th International Conference on Document Analysis and Recognition ICDAR2015.726–730.
Abstract: In this paper, we propose the use of an Attributed Graph Grammar as unique framework to model and recognize the structure of floor plans. This grammar represents a building as a hierarchical composition of structurally and semantically related elements, where common representations are learned stochastically from annotated data. Given an input image, the parsing consists on constructing that graph representation that better agrees with the probabilistic model defined by the grammar. The proposed method provides several advantages with respect to the traditional floor plan analysis techniques. It uses an unsupervised statistical approach for detecting walls that adapts to different graphical notations and relaxes strong structural assumptions such are straightness and orthogonality. Moreover, the independence between the knowledge model and the parsing implementation allows the method to learn automatically different building configurations and thus, to cope the existing variability. These advantages are clearly demonstrated by comparing it with the most recent floor plan interpretation techniques on 4 datasets of real floor plans with different notations.
|
|