|
Lei Kang, Marçal Rusiñol, Alicia Fornes, Pau Riba and Mauricio Villegas. 2020. Unsupervised Adaptation for Synthetic-to-Real Handwritten Word Recognition. IEEE Winter Conference on Applications of Computer Vision.
Abstract: Handwritten Text Recognition (HTR) is still a challenging problem because it must deal with two important difficulties: the variability among writing styles, and the scarcity of labelled data. To alleviate such problems, synthetic data generation and data augmentation are typically used to train HTR systems. However, training with such data produces encouraging but still inaccurate transcriptions in real words. In this paper, we propose an unsupervised writer adaptation approach that is able to automatically adjust a generic handwritten word recognizer, fully trained with synthetic fonts, towards a new incoming writer. We have experimentally validated our proposal using five different datasets, covering several challenges (i) the document source: modern and historic samples, which may involve paper degradation problems; (ii) different handwriting styles: single and multiple writer collections; and (iii) language, which involves different character combinations. Across these challenging collections, we show that our system is able to maintain its performance, thus, it provides a practical and generic approach to deal with new document collections without requiring any expensive and tedious manual annotation step.
|
|
|
Raul Gomez, Jaume Gibert, Lluis Gomez and Dimosthenis Karatzas. 2020. Exploring Hate Speech Detection in Multimodal Publications. IEEE Winter Conference on Applications of Computer Vision.
Abstract: In this work we target the problem of hate speech detection in multimodal publications formed by a text and an image. We gather and annotate a large scale dataset from Twitter, MMHS150K, and propose different models that jointly analyze textual and visual information for hate speech detection, comparing them with unimodal detection. We provide quantitative and qualitative results and analyze the challenges of the proposed task. We find that, even though images are useful for the hate speech detection task, current multimodal models cannot outperform models analyzing only text. We discuss why and open the field and the dataset for further research.
|
|
|
Andres Mafla, Sounak Dey, Ali Furkan Biten, Lluis Gomez and Dimosthenis Karatzas. 2020. Fine-grained Image Classification and Retrieval by Combining Visual and Locally Pooled Textual Features. IEEE Winter Conference on Applications of Computer Vision.
Abstract: Text contained in an image carries high-level semantics that can be exploited to achieve richer image understanding. In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks such as image retrieval, fine-grained classification, and visual question answering. In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities. The novelty of the proposed model consists of the usage of a PHOC descriptor to construct a bag of textual words along with a Fisher Vector Encoding that captures the morphology of text. This approach provides a stronger multimodal representation for this task and as our experiments demonstrate, it achieves state-of-the-art results on two different tasks, fine-grained classification and image retrieval.
|
|
|
Andres Mafla, Sounak Dey, Ali Furkan Biten, Lluis Gomez and Dimosthenis Karatzas. 2021. Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval. IEEE Winter Conference on Applications of Computer Vision.4022–4032.
|
|
|
Andres Mafla, Rafael S. Rezende, Lluis Gomez, Diana Larlus and Dimosthenis Karatzas. 2021. StacMR: Scene-Text Aware Cross-Modal Retrieval. IEEE Winter Conference on Applications of Computer Vision.2219–2229.
|
|
|
Minesh Mathew, Dimosthenis Karatzas and C.V. Jawahar. 2021. DocVQA: A Dataset for VQA on Document Images. IEEE Winter Conference on Applications of Computer Vision.2200–2209.
Abstract: We present a new dataset for Visual Question Answering (VQA) on document images called DocVQA. The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension is presented. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial. The dataset, code and leaderboard are available at docvqa. org
|
|
|
Arka Ujjal Dey, Suman Ghosh and Ernest Valveny. 2018. Don't only Feel Read: Using Scene text to understand advertisements. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
Abstract: We propose a framework for automated classification of Advertisement Images, using not just Visual features but also Textual cues extracted from embedded text. Our approach takes inspiration from the assumption that Ad images contain meaningful textual content, that can provide discriminative semantic interpretetion, and can thus aid in classifcation tasks. To this end, we develop a framework using off-the-shelf components, and demonstrate the effectiveness of Textual cues in semantic Classfication tasks.
|
|
|
Dena Bazazian, Dimosthenis Karatzas and Andrew Bagdanov. 2018. Word Spotting in Scene Images based on Character Recognition. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.1872–1874.
Abstract: In this paper we address the problem of unconstrained Word Spotting in scene images. We train a Fully Convolutional Network to produce heatmaps of all the character classes. Then, we employ the Text Proposals approach and, via a rectangle classifier, detect the most likely rectangle for each query word based on the character attribute maps. We evaluate the proposed method on ICDAR2015 and show that it is capable of identifying and recognizing query words in natural scene images.
|
|
|
Josep Llados, Enric Marti and Jordi Regincos. 1993. Interpretación de diseños a mano alzada como técnica de entrada a un sistema CAD en un ámbito de arquitectura. III National Conference on Computer Graphics (CEIG'93). Granada, 33–46.
Abstract: En los últimos años, se ha introducido ámpliamente el uso de los sistemas CAD en dominios relacionados con la arquitectura. Dichos sistemas CAD son muy útiles para el arquitecto en el diseño de planos de plantas de edificios. Sin embargo, la utilización eficiente de un CAD requiere un tiempo de aprendizaje, en especial, en la etapa de creación y edición del diseño. Además, una vez familiarizado con un CAD, el arquitecto debe adaptarse a la simbología que éste le permite que, en algunos casos puede ser poco flexible.Con esta motivación, se propone una técnica alternativa de entrada de documentos en sistemas CAD. Dicha técnica se basa en el diseño del plano sobre papel mediante un dibujo lineal hecho a mano alzada a modo de boceto e introducido mediante scanner. Una vez interpretado este dibujo inicial e introducido en el CAD, el arquitecto sólo deber hacer sobre éste los retoques finales del documento.El sistema de entrada propuesto se compone de dos módulos principales: En primer lugar, la extracción de características (puntos característicos, rectas y arcos) de la imagen obtenida mediante scanner. En dicho módulo se aplican principalmente técnicas de procesamiento de imágenes obteniendo como resultado una representaci¢n del dibujo de entrada basada en grafos de atributos. El objetivo del segundo módulo es el de encontrar y reconocer las entidades integrantes del documento (puertas, mesas, etc.) en base a una biblioteca de símbolos definida en el sistema CAD. La implementación de dicho módulo se basa en técnicas de isomorfismo de grafos.El sistema propone una alternativa que permita, mediante el diseño a mano alzada, la introducción de la informaci¢n m s significativa del plano de forma rápida, sencilla y estandarizada por parte del usuario.
|
|
|
Oriol Ramos Terrades and Ernest Valveny. 2003. Line Detection Using Ridgelets Transform for Graphic Symbol Representation.
|
|