|
Joan Mas, B. Lamiroy, Gemma Sanchez and Josep Llados. 2006. Automatic Adjacency Grammar Generation from User Drawn Sketches.
|
|
|
Oriol Ramos Terrades, Salvatore Tabbone and Ernest Valveny. 2006. Combination of shape descriptors using an adaptation of boosting.
|
|
|
Dimosthenis Karatzas, Marçal Rusiñol, Coen Antens and Miquel Ferrer. 2008. Segmentation Robust to the Vignette Effect for Machine Vision Systems. 19th International Conference on Pattern Recognition.
Abstract: The vignette effect (radial fall-off) is commonly encountered in images obtained through certain image acquisition setups and can seriously hinder automatic analysis processes. In this paper we present a fast and efficient method for dealing with vignetting in the context of object segmentation in an existing industrial inspection setup. The vignette effect is modelled here as a circular, non-linear gradient. The method estimates the gradient parameters and employs them to perform segmentation. Segmentation results on a variety of images indicate that the presented method is able to successfully tackle the vignette effect.
|
|
|
Partha Pratim Roy, Umapada Pal, Josep Llados and F. Kimura. 2008. Convex Hull based Approach for Multi-oriented Character Recognition form Graphical Documents. 19th International Conference on Pattern Recognition.
|
|
|
H. Chouaib, Oriol Ramos Terrades, Salvatore Tabbone, F. Cloppet and N. Vincent. 2008. Feature Selection Combining Genetic Algorithm and Adaboost Classifiers. 19th International Conference on Pattern Recognition.1–4.
|
|
|
Salvatore Tabbone, Oriol Ramos Terrades and S. Barrat. 2008. Histogram of radon transform. A useful descriptor for shape retrieval. 19th International Conference on Pattern Recognition.1–4.
|
|
|
Miquel Ferrer, Ernest Valveny, F. Serratosa, K. Riesen and Horst Bunke. 2008. An Approximate Algorith for Median Graph Computation using Graph Embedding. 19th International Conference on Pattern Recognition..
|
|
|
Clement Guerin, Christophe Rigaud, Karell Bertet, Jean-Christophe Burie, Arnaud Revel and Jean-Marc Ogier. 2014. Réduction de l’espace de recherche pour les personnages de bandes dessinées. 19th National Congress Reconnaissance de Formes et l'Intelligence Artificielle.
Abstract: Les bandes dessinées représentent un patrimoine culturel important dans de nombreux pays et leur numérisation massive offre la possibilité d'effectuer des recherches dans le contenu des images. À ce jour, ce sont principalement les structures des pages et leurs contenus textuels qui ont été étudiés, peu de travaux portent sur le contenu graphique. Nous proposons de nous appuyer sur des éléments déjà étudiés tels que la position des cases et des bulles, pour réduire l'espace de recherche et localiser les personnages en fonction de la queue des bulles. L'évaluation de nos différentes contributions à partir de la base eBDtheque montre un taux de détection des queues de bulle de 81.2%, de localisation des personnages allant jusqu'à 85% et un gain d'espace de recherche de plus de 50%.
Keywords: contextual search; document analysis; comics characters
|
|
|
Agnes Borras, Francesc Tous, Josep Llados and Maria Vanrell. 2003. High-Level Clothes Description Based on Colour-Texture and Structural Features. 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003.108–116. (LNCS.)
Abstract: ecture Notes in Computer Science 2652 108–116
|
|
|
J. Chazalon and 9 others. 2017. SmartDoc 2017 Video Capture: Mobile Document Acquisition in Video Mode. 1st International Workshop on Open Services and Tools for Document Analysis.
Abstract: As mobile document acquisition using smartphones is getting more and more common, along with the continuous improvement of mobile devices (both in terms of computing power and image quality), we can wonder to which extent mobile phones can replace desktop scanners. Modern applications can cope with perspective distortion and normalize the contrast of a document page captured with a smartphone, and in some cases like bottle labels or posters, smartphones even have the advantage of allowing the acquisition of non-flat or large documents. However, several cases remain hard to handle, such as reflective documents (identity cards, badges, glossy magazine cover, etc.) or large documents for which some regions require an important amount of detail. This paper introduces the SmartDoc 2017 benchmark (named “SmartDoc Video Capture”), which aims at
assessing whether capturing documents using the video mode of a smartphone could solve those issues. The task under evaluation is both a stitching and a reconstruction problem, as the user can move the device over different parts of the document to capture details or try to erase highlights. The material released consists of a dataset, an evaluation method and the associated tool, a sample method, and the tools required to extend the dataset. All the components are released publicly under very permissive licenses, and we particularly cared about maximizing the ease of
understanding, usage and improvement.
|
|