|
Youssef El Rhabi, Simon Loic and Brun Luc. 2015. Estimation de la pose d’une caméra à partir d’un flux vidéo en s’approchant du temps réel. 15ème édition d'ORASIS, journées francophones des jeunes chercheurs en vision par ordinateur ORASIS2015.
Abstract: Finding a way to estimate quickly and robustly the pose of an image is essential in augmented reality. Here we will discuss the approach we chose in order to get closer to real time by using SIFT points [4]. We propose a method based on filtering both SIFT points and images on which to focus on. Hence we will focus on relevant data.
Keywords: Augmented Reality; SFM; SLAM; real time pose computation; 2D/3D registration
|
|
|
Lluis Gomez, Andres Mafla, Marçal Rusiñol and Dimosthenis Karatzas. 2018. Single Shot Scene Text Retrieval. 15th European Conference on Computer Vision.728–744. (LNCS.)
Abstract: Textual information found in scene images provides high level semantic information about the image and its context and it can be leveraged for better scene understanding. In this paper we address the problem of scene text retrieval: given a text query, the system must return all images containing the queried text. The novelty of the proposed model consists in the usage of a single shot CNN architecture that predicts at the same time bounding boxes and a compact text representation of the words in them. In this way, the text based image retrieval task can be casted as a simple nearest neighbor search of the query text representation over the outputs of the CNN over the entire image
database. Our experiments demonstrate that the proposed architecture
outperforms previous state-of-the-art while it offers a significant increase
in processing speed.
Keywords: Image retrieval; Scene text; Word spotting; Convolutional Neural Networks; Region Proposals Networks; PHOC
|
|
|
Raul Gomez, Lluis Gomez, Jaume Gibert and Dimosthenis Karatzas. 2018. Learning to Learn from Web Data through Deep Semantic Embeddings. 15th European Conference on Computer Vision Workshops.514–529. (LNCS.)
Abstract: In this paper we propose to learn a multimodal image and text embedding from Web and Social Media data, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the pipeline can learn from images with associated text without supervision and perform a thourough analysis of five different text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text based image retrieval task, and we clearly outperform state of the art in the MIRFlickr dataset when training in the target data. Further we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings.
|
|
|
Raul Gomez, Lluis Gomez, Jaume Gibert and Dimosthenis Karatzas. 2018. Learning from# Barcelona Instagram data what Locals and Tourists post about its Neighbourhoods. 15th European Conference on Computer Vision Workshops.530–544. (LNCS.)
Abstract: Massive tourism is becoming a big problem for some cities, such as Barcelona, due to its concentration in some neighborhoods. In this work we gather Instagram data related to Barcelona consisting on images-captions pairs and, using the text as a supervisory signal, we learn relations between images, words and neighborhoods. Our goal is to learn which visual elements appear in photos when people is posting about each neighborhood. We perform a language separate treatment of the data and show that it can be extrapolated to a tourists and locals separate analysis, and that tourism is reflected in Social Media at a neighborhood level. The presented pipeline allows analyzing the differences between the images that tourists and locals associate to the different neighborhoods. The proposed method, which can be extended to other cities or subjects, proves that Instagram data can be used to train multi-modal (image and text) machine learning models that are useful to analyze publications about a city at a neighborhood level. We publish the collected dataset, InstaBarcelona and the code used in the analysis.
|
|
|
Sergi Garcia Bordils and 6 others. 2022. Read While You Drive-Multilingual Text Tracking on the Road. 15th IAPR International workshop on document analysis systems.756–770. (LNCS.)
Abstract: Visual data obtained during driving scenarios usually contain large amounts of text that conveys semantic information necessary to analyse the urban environment and is integral to the traffic control plan. Yet, research on autonomous driving or driver assistance systems typically ignores this information. To advance research in this direction, we present RoadText-3K, a large driving video dataset with fully annotated text. RoadText-3K is three times bigger than its predecessor and contains data from varied geographical locations, unconstrained driving conditions and multiple languages and scripts. We offer a comprehensive analysis of tracking by detection and detection by tracking methods exploring the limits of state-of-the-art text detection. Finally, we propose a new end-to-end trainable tracking model that yields state-of-the-art results on this challenging dataset. Our experiments demonstrate the complexity and variability of RoadText-3K and establish a new, realistic benchmark for scene text tracking in the wild.
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2010. Graph of Words Embedding for Molecular Structure-Activity Relationship Analysis. 15th Iberoamerican Congress on Pattern Recognition.30–37. (LNCS.)
Abstract: Structure-Activity relationship analysis aims at discovering chemical activity of molecular compounds based on their structure. In this article we make use of a particular graph representation of molecules and propose a new graph embedding procedure to solve the problem of structure-activity relationship analysis. The embedding is essentially an arrangement of a molecule in the form of a vector by considering frequencies of appearing atoms and frequencies of covalent bonds between them. Results on two benchmark databases show the effectiveness of the proposed technique in terms of recognition accuracy while avoiding high operational costs in the transformation.
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2013. Handwritten Word Spotting with Corrected Attributes. 15th IEEE International Conference on Computer Vision.1017–1024.
Abstract: We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results.
|
|
|
Raul Gomez, Ali Furkan Biten, Lluis Gomez, Jaume Gibert, Marçal Rusiñol and Dimosthenis Karatzas. 2019. Selective Style Transfer for Text. 15th International Conference on Document Analysis and Recognition.805–812.
Abstract: This paper explores the possibilities of image style transfer applied to text maintaining the original transcriptions. Results on different text domains (scene text, machine printed text and handwritten text) and cross-modal results demonstrate that this is feasible, and open different research lines. Furthermore, two architectures for selective style transfer, which means
transferring style to only desired image pixels, are proposed. Finally, scene text selective style transfer is evaluated as a data augmentation technique to expand scene text detection datasets, resulting in a boost of text detectors performance. Our implementation of the described models is publicly available.
Keywords: transfer; text style transfer; data augmentation; scene text detection
|
|
|
Ali Furkan Biten and 8 others. 2019. ICDAR 2019 Competition on Scene Text Visual Question Answering. 15th International Conference on Document Analysis and Recognition.1563–1570.
Abstract: This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23,038 images annotated with 31,791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios. The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that can exploit scene text to achieve holistic image understanding.
|
|
|
Rui Zhang and 14 others. 2019. ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard. 15th International Conference on Document Analysis and Recognition.1577–1581.
Abstract: Chinese scene text reading is one of the most challenging problems in computer vision and has attracted great interest. Different from English text, Chinese has more than 6000 commonly used characters and Chinesecharacters can be arranged in various layouts with numerous fonts. The Chinese signboards in street view are a good choice for Chinese scene text images since they have different backgrounds, fonts and layouts. We organized a competition called ICDAR2019-ReCTS, which mainly focuses on reading Chinese text on signboard. This report presents the final results of the competition. A large-scale dataset of 25,000 annotated signboard images, in which all the text lines and characters are annotated with locations and transcriptions, were released. Four tasks, namely character recognition, text line recognition, text line detection and end-to-end recognition were set up. Besides, considering the Chinese text ambiguity issue, we proposed a multi ground truth (multi-GT) evaluation method to make evaluation fairer. The competition started on March 1, 2019 and ended on April 30, 2019. 262 submissions from 46 teams are received. Most of the participants come from universities, research institutes, and tech companies in China. There are also some participants from the United States, Australia, Singapore, and Korea. 21 teams submit results for Task 1, 23 teams submit results for Task 2, 24 teams submit results for Task 3, and 13 teams submit results for Task 4.
|
|