|
Alicia Fornes, Josep Llados and Gemma Sanchez. 2007. Old Handwritten Musical Symbol Classification by a Dynamic Time Warping Based Method. Seventh IAPR International Workshop on Graphics Recognition.26–27.
|
|
|
Jose Antonio Rodriguez, Gemma Sanchez and Josep Llados. 2007. Categorization of Digital Ink Elements using Spectral Features. Seventh IAPR International Workshop on Graphics Recognition.63–64.
|
|
|
Ernest Valveny, Salvatore Tabbone, Oriol Ramos Terrades and Emilie Jean-Marie Odile. 2007. Performance Characterization of Shape Descriptors for Symbol Representation. Seventh IAPR International Workshop on Graphics Recognition.82–83.
|
|
|
Alicia Fornes, Sergio Escalera, Josep Llados and Gemma Sanchez. 2007. Symbol Recognition by Multi-class Blurred Shape Models. Seventh IAPR International Workshop on Graphics Recognition.11–13.
|
|
|
Josep Llados, Gemma Sanchez and Enric Marti. 1997. A String-Based Method to Recognize Symbols and Structural Textures in Architectural Plans..
|
|
|
Marçal Rusiñol. 2019. Classificació semàntica i visual de documents digitals.
Abstract: Se analizan los sistemas de procesamiento automático que trabajan sobre documentos digitalizados con el objetivo de describir los contenidos. De esta forma contribuyen a facilitar el acceso, permitir la indización automática y hacer accesibles los documentos a los motores de búsqueda. El objetivo de estas tecnologías es poder entrenar modelos computacionales que sean capaces de clasificar, agrupar o realizar búsquedas sobre documentos digitales. Así, se describen las tareas de clasificación, agrupamiento y búsqueda. Cuando utilizamos tecnologías de inteligencia artificial en los sistemas de
clasificación esperamos que la herramienta nos devuelva etiquetas semánticas; en sistemas de agrupamiento que nos devuelva documentos agrupados en clusters significativos; y en sistemas de búsqueda esperamos que dada una consulta, nos devuelva una lista ordenada de documentos en función de la relevancia. A continuación se da una visión de conjunto de los métodos que nos permiten describir los documentos digitales, tanto de manera visual (cuál es su apariencia), como a partir de sus contenidos semánticos (de qué hablan). En cuanto a la descripción visual de documentos se aborda el estado de la cuestión de las representaciones numéricas de documentos digitalizados
tanto por métodos clásicos como por métodos basados en el aprendizaje profundo (deep learning). Respecto de la descripción semántica de los contenidos se analizan técnicas como el reconocimiento óptico de caracteres (OCR); el cálculo de estadísticas básicas sobre la aparición de las diferentes palabras en un texto (bag-of-words model); y los métodos basados en aprendizaje profundo como el método word2vec, basado en una red neuronal que, dadas unas cuantas palabras de un texto, debe predecir cuál será la
siguiente palabra. Desde el campo de las ingenierías se están transfiriendo conocimientos que se han integrado en productos o servicios en los ámbitos de la archivística, la biblioteconomía, la documentación y las plataformas de gran consumo, sin embargo los algoritmos deben ser lo suficientemente eficientes no sólo para el reconocimiento y transcripción literal sino también para la capacidad de interpretación de los contenidos.
|
|
|
Marçal Rusiñol and Lluis Gomez. 2018. Avances en clasificación de imágenes en los últimos diez años. Perspectivas y limitaciones en el ámbito de archivos fotográficos históricos.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2016. Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary. Recent Trends in Image Processing and Pattern Recognition.
|
|
|
Josep Llados, Ernest Valveny and Enric Marti. 2000. Symbol Recognition in Document Image Analysis: Methods and Challenges. Recent Research Developments in Pattern Recognition, Transworld Research Network,, 1, 151–178.
|
|
|
Sergio Escalera, Alicia Fornes, Oriol Pujol, Josep Llados and Petia Radeva. 2007. Multi-class Binary Object Categorization using Blurred Shape Models. Progress in Pattern Recognition, Image Analysis and Applications, 12th Iberoamerican Congress on Pattern.773–782. (LCNS.)
|
|