|
Marçal Rusiñol, R.Roset, Josep Llados and C.Montaner. 2011. Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation. In Proceedings of the Sixth International Workshop on Digital Technologies in Cartographic Heritage.
|
|
|
Marçal Rusiñol, V. Poulain d'Andecy, Dimosthenis Karatzas and Josep Llados. 2011. Classification of Administrative Document Images by Logo Identification. In proceedings of 9th IAPR Workshop on Graphic Recognition.
Abstract: This paper is focused on the categorization of administrative document images (such as invoices) based on the recognition of the supplier's graphical logo. Two different methods are proposed, the first one uses a bag-of-visual-words model whereas the second one tries to locate logo images described by the blurred shape model descriptor within documents by a sliding-window technique. Preliminar results are reported with a dataset of real administrative documents.
|
|
|
Anjan Dutta, Josep Llados and Umapada Pal. 2011. Bag-of-GraphPaths Descriptors for Symbol Recognition and Spotting in Line Drawings. In proceedings of 9th IAPR Workshop on Graphic Recognition. Springer Berlin Heidelberg. (LNCS.)
Abstract: Graphical symbol recognition and spotting recently have become an important research activity. In this work we present a descriptor for symbols, especially for line drawings. The descriptor is based on the graph representation of graphical objects. We construct graphs from the vectorized information of the binarized images, where the critical points detected by the vectorization algorithm are considered as nodes and the lines joining them are considered as edges. Graph paths between two nodes in a graph are the finite sequences of nodes following the order from the starting to the final node. The occurrences of different graph paths in a given graph is an important feature, as they capture the geometrical and structural attributes of a graph. So the graph representing a symbol can efficiently be represent by the occurrences of its different paths. Their occurrences in a symbol can be obtained in terms of a histogram counting the number of some fixed prototype paths, we call the histogram as the Bag-of-GraphPaths (BOGP). These BOGP histograms are used as a descriptor to measure the distance among the symbols in vector space. We use the descriptor for three applications, they are: (1) classification of the graphical symbols, (2) spotting of the architectural symbols on floorplans, (3) classification of the historical handwritten words.
|
|
|
Alicia Fornes, Josep Llados, Gemma Sanchez and Horst Bunke. 2009. Symbol-independent writer identification in old handwritten music scores. In proceedings of 8th IAPR International Workshop on Graphics Recognition. Springer Berlin Heidelberg, 186–197.
|
|
|
Salim Jouili, Salvatore Tabbone and Ernest Valveny. 2009. Evaluation of graph matching measures for documents retrieval. In proceedings of 8th IAPR International Workshop on Graphics Recognition.13–21.
Abstract: In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used which include line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each grahp distance measure depends on the kind of data and the graph representation technique.
Keywords: Graph Matching; Graph retrieval; structural representation; Performance Evaluation
|
|
|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2009. Touching Text Character Localization in Graphical Documents using SIFT. In proceedings 8th IAPR International Workshop on Graphics Recognition.
Abstract: Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches.
|
|
|
Oriol Ramos Terrades and Ernest Valveny. 2003. Line Detection Using Ridgelets Transform for Graphic Symbol Representation.
|
|
|
Josep Llados, Enric Marti and Jordi Regincos. 1993. Interpretación de diseños a mano alzada como técnica de entrada a un sistema CAD en un ámbito de arquitectura. III National Conference on Computer Graphics (CEIG'93). Granada, 33–46.
Abstract: En los últimos años, se ha introducido ámpliamente el uso de los sistemas CAD en dominios relacionados con la arquitectura. Dichos sistemas CAD son muy útiles para el arquitecto en el diseño de planos de plantas de edificios. Sin embargo, la utilización eficiente de un CAD requiere un tiempo de aprendizaje, en especial, en la etapa de creación y edición del diseño. Además, una vez familiarizado con un CAD, el arquitecto debe adaptarse a la simbología que éste le permite que, en algunos casos puede ser poco flexible.Con esta motivación, se propone una técnica alternativa de entrada de documentos en sistemas CAD. Dicha técnica se basa en el diseño del plano sobre papel mediante un dibujo lineal hecho a mano alzada a modo de boceto e introducido mediante scanner. Una vez interpretado este dibujo inicial e introducido en el CAD, el arquitecto sólo deber hacer sobre éste los retoques finales del documento.El sistema de entrada propuesto se compone de dos módulos principales: En primer lugar, la extracción de características (puntos característicos, rectas y arcos) de la imagen obtenida mediante scanner. En dicho módulo se aplican principalmente técnicas de procesamiento de imágenes obteniendo como resultado una representaci¢n del dibujo de entrada basada en grafos de atributos. El objetivo del segundo módulo es el de encontrar y reconocer las entidades integrantes del documento (puertas, mesas, etc.) en base a una biblioteca de símbolos definida en el sistema CAD. La implementación de dicho módulo se basa en técnicas de isomorfismo de grafos.El sistema propone una alternativa que permita, mediante el diseño a mano alzada, la introducción de la informaci¢n m s significativa del plano de forma rápida, sencilla y estandarizada por parte del usuario.
|
|
|
Arka Ujjal Dey, Suman Ghosh and Ernest Valveny. 2018. Don't only Feel Read: Using Scene text to understand advertisements. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
Abstract: We propose a framework for automated classification of Advertisement Images, using not just Visual features but also Textual cues extracted from embedded text. Our approach takes inspiration from the assumption that Ad images contain meaningful textual content, that can provide discriminative semantic interpretetion, and can thus aid in classifcation tasks. To this end, we develop a framework using off-the-shelf components, and demonstrate the effectiveness of Textual cues in semantic Classfication tasks.
|
|
|
Dena Bazazian, Dimosthenis Karatzas and Andrew Bagdanov. 2018. Word Spotting in Scene Images based on Character Recognition. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.1872–1874.
Abstract: In this paper we address the problem of unconstrained Word Spotting in scene images. We train a Fully Convolutional Network to produce heatmaps of all the character classes. Then, we employ the Text Proposals approach and, via a rectangle classifier, detect the most likely rectangle for each query word based on the character attribute maps. We evaluate the proposed method on ICDAR2015 and show that it is capable of identifying and recognizing query words in natural scene images.
|
|