|
Sounak Dey, Anjan Dutta, Josep Llados, Alicia Fornes and Umapada Pal. 2017. Shallow Neural Network Model for Hand-drawn Symbol Recognition in Multi-Writer Scenario. 14th International Conference on Document Analysis and Recognition.31–32.
Abstract: One of the main challenges in hand drawn symbol recognition is the variability among symbols because of the different writer styles. In this paper, we present and discuss some results recognizing hand-drawn symbols with a shallow neural network. A neural network model inspired from the LeNet architecture has been used to achieve state-of-the-art results with
very less training data, which is very unlikely to the data hungry deep neural network. From the results, it has become evident that the neural network architectures can efficiently describe and recognize hand drawn symbols from different writers and can model the inter author aberration
|
|
|
Pau Riba, Anjan Dutta, Josep Llados and Alicia Fornes. 2017. Graph-based deep learning for graphics classification. 14th International Conference on Document Analysis and Recognition.29–30.
Abstract: Graph-based representations are a common way to deal with graphics recognition problems. However, previous works were mainly focused on developing learning-free techniques. The success of deep learning frameworks have proved that learning is a powerful tool to solve many problems, however it is not straightforward to extend these methodologies to non euclidean data such as graphs. On the other hand, graphs are a good representational structure for graphical entities. In this work, we present some deep learning techniques that have been proposed in the literature for graph-based representations and
we show how they can be used in graphics recognition problems
|
|
|
Adria Rico and Alicia Fornes. 2017. Camera-based Optical Music Recognition using a Convolutional Neural Network. 12th IAPR International Workshop on Graphics Recognition.27–28.
Abstract: Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results
Keywords: optical music recognition; document analysis; convolutional neural network; deep learning
|
|
|
Oriol Vicente, Alicia Fornes and Ramon Valdes. 2017. La Xarxa d Humanitats Digitals de la UABCie: una estructura inteligente para la investigación y la transferencia en Humanidades. 3rd Congreso Internacional de Humanidades Digitales Hispánicas. Sociedad Internacional.281–383.
|
|
|
Alicia Fornes, Beata Megyesi and Joan Mas. 2017. Transcription of Encoded Manuscripts with Image Processing Techniques. Digital Humanities Conference.441–443.
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Aura Hernandez-Sabate, Marçal Rusiñol and Francesc J. Ferri. 2018. Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction. JMIV, 60(4), 512–524.
Abstract: This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
|
|
|
Dimosthenis Karatzas, Lluis Gomez and Marçal Rusiñol. 2017. The Robust Reading Competition Annotation and Evaluation Platform. 1st International Workshop on Open Services and Tools for Document Analysis.
Abstract: The ICDAR Robust Reading Competition (RRC), initiated in 2003 and re-established in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation
of data, and to provide online and offline performance evaluation and analysis services
|
|
|
David Aldavert. 2021. Efficient and Scalable Handwritten Word Spotting on Historical Documents using Bag of Visual Words. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Word spotting can be defined as the pattern recognition tasked aimed at locating and retrieving a specific keyword within a document image collection without explicitly transcribing the whole corpus. Its use is particularly interesting when applied in scenarios where Optical Character Recognition performs poorly or can not be used at all. This thesis focuses on such a scenario, word spotting on historical handwritten documents that have been written by a single author or by multiple authors with a similar calligraphy.
This problem requires a visual signature that is robust to image artifacts, flexible to accommodate script variations and efficient to retrieve information in a rapid manner. For this, we have developed a set of word spotting methods that on their foundation use the well known Bag-of-Visual-Words (BoVW) representation. This representation has gained popularity among the document image analysis community to characterize handwritten words
in an unsupervised manner. However, most approaches on this field rely on a basic BoVW configuration and disregard complex encoding and spatial representations. We determine which BoVW configurations provide the best performance boost to a spotting system.
Then, we extend the segmentation-based word spotting, where word candidates are given a priori, to segmentation-free spotting. The proposed approach seeds the document images with overlapping word location candidates and characterizes them with a BoVW signature. Retrieval is achieved comparing the query and candidate signatures and returning the locations that provide a higher consensus. This is a simple but powerful approach that requires a more compact signature than in a segmentation-based scenario. We first
project the BoVW signature into a reduced semantic topics space and then compress it further using Product Quantizers. The resulting signature only requires a few dozen bytes, allowing us to index thousands of pages on a common desktop computer. The final system still yields a performance comparable to the state-of-the-art despite all the information loss during the compression phases.
Afterwards, we also study how to combine different modalities of information in order to create a query-by-X spotting system where, words are indexed using an information modality and queries are retrieved using another. We consider three different information modalities: visual, textual and audio. Our proposal is to create a latent feature space where features which are semantically related are projected onto the same topics. Creating thus a new feature space where information from different modalities can be compared. Later, we consider the codebook generation and descriptor encoding problem. The codebooks used to encode the BoVW signatures are usually created using an unsupervised clustering algorithm and, they require to test multiple parameters to determine which configuration is best for a certain document collection. We propose a semantic clustering algorithm which allows to estimate the best parameter from data. Since gather annotated data is costly, we use synthetically generated word images. The resulting codebook is database agnostic, i. e. a codebook that yields a good performance on document collections that use the same script. We also propose the use of an additional codebook to approximate descriptors and reduce the descriptor encoding
complexity to sub-linear.
Finally, we focus on the problem of signatures dimensionality. We propose a new symbol probability signature where each bin represents the probability that a certain symbol is present a certain location of the word image. This signature is extremely compact and combined with compression techniques can represent word images with just a few bytes per signature.
|
|
|
Raul Gomez and 7 others. 2017. ICDAR2017 Robust Reading Challenge on COCO-Text. 14th International Conference on Document Analysis and Recognition.
|
|
|
Masakazu Iwamura, Naoyuki Morimoto, Keishi Tainaka, Dena Bazazian, Lluis Gomez and Dimosthenis Karatzas. 2017. ICDAR2017 Robust Reading Challenge on Omnidirectional Video. 14th International Conference on Document Analysis and Recognition.
Abstract: Results of ICDAR 2017 Robust Reading Challenge on Omnidirectional Video are presented. This competition uses Downtown Osaka Scene Text (DOST) Dataset that was captured in Osaka, Japan with an omnidirectional camera. Hence, it consists of sequential images (videos) of different view angles. Regarding the sequential images as videos (video mode), two tasks of localisation and end-to-end recognition are prepared. Regarding them as a set of still images (still image mode), three tasks of localisation, cropped word recognition and end-to-end recognition are prepared. As the dataset has been captured in Japan, the dataset contains Japanese text but also include text consisting of alphanumeric characters (Latin text). Hence, a submitted result for each task is evaluated in three ways: using Japanese only ground truth (GT), using Latin only GT and using combined GTs of both. Finally, by the submission deadline, we have received two submissions in the text localisation task of the still image mode. We intend to continue the competition in the open mode. Expecting further submissions, in this report we provide baseline results in all the tasks in addition to the submissions from the community.
|
|