|
Umapada Pal, Partha Pratim Roy, N. Tripathya and Josep Llados. 2010. Multi-oriented Bangla and Devnagari text recognition. PR, 43(12), 4124–4136.
Abstract: There are printed complex documents where text lines of a single page may have different orientations or the text lines may be curved in shape. As a result, it is difficult to detect the skew of such documents and hence character segmentation and recognition of such documents are a complex task. In this paper, using background and foreground information we propose a novel scheme towards the recognition of Indian complex documents of Bangla and Devnagari script. In Bangla and Devnagari documents usually characters in a word touch and they form cavity regions. To take care of these cavity regions, background information of such documents is used. Convex hull and water reservoir principle have been applied for this purpose. Here, at first, the characters are segmented from the documents using the background information of the text. Next, individual characters are recognized using rotation invariant features obtained from the foreground part of the characters.
For character segmentation, at first, writing mode of a touching component (word) is detected using water reservoir principle based features. Next, depending on writing mode and the reservoir base-region of the touching component, a set of candidate envelope points is then selected from the contour points of the component. Based on these candidate points, the touching component is finally segmented into individual characters. For recognition of multi-sized/multi-oriented characters the features are computed from different angular information obtained from the external and internal contour pixels of the characters. These angular information are computed in such a way that they do not depend on the size and rotation of the characters. Circular and convex hull rings have been used to divide a character into smaller zones to get zone-wise features for higher recognition results. We combine circular and convex hull features to improve the results and these features are fed to support vector machines (SVM) for recognition. From our experiment we obtained recognition results of 99.18% (98.86%) accuracy when tested on 7515 (7874) Devnagari (Bangla) characters.
|
|
|
Anjan Dutta. 2010. Symbol Spotting in Graphical Documents by Serialized Subgraph Matching. (Master's thesis, .)
|
|
|
David Fernandez. 2010. Handwritten Word Spotting in Old Manuscript Images using Shape Descriptors. (Master's thesis, .)
|
|
|
Jaume Gibert and Ernest Valveny. 2010. Graph Embedding based on Nodes Attributes Representatives and a Graph of Words Representation. In In E.R. Hancock, R.C.W., T. Windeatt, I. Ulusoy and F. Escolano,, ed. 13th International worshop on structural and syntactic pattern recognition and 8th international worshop on statistical pattern recognition. Springer Berlin Heidelberg, 223–232. (LNCS.)
Abstract: Although graph embedding has recently been used to extend statistical pattern recognition techniques to the graph domain, some existing embeddings are usually computationally expensive as they rely on classical graph-based operations. In this paper we present a new way to embed graphs into vector spaces by first encapsulating the information stored in the original graph under another graph representation by clustering the attributes of the graphs to be processed. This new representation makes the association of graphs to vectors an easy step by just arranging both node attributes and the adjacency matrix in the form of vectors. To test our method, we use two different databases of graphs whose nodes attributes are of different nature. A comparison with a reference method permits to show that this new embedding is better in terms of classification rates, while being much more faster.
|
|
|
Anjan Dutta, Umapada Pal, Alicia Fornes and Josep Llados. 2010. An Efficient Staff Removal Technique from Printed Musical Documents. 20th International Conference on Pattern Recognition.1965–1968.
Abstract: Staff removal is an important preprocessing step of the Optical Music Recognition (OMR). The process aims to remove the stafflines from a musical document and retain only the musical symbols, later these symbols are used effectively to identify the music information. This paper proposes a simple but robust method to remove stafflines from printed musical scores. In the proposed methodology we have considered a staffline segment as a horizontal linkage of vertical black runs with uniform height. We have used the neighbouring properties of a staffline segment to validate it as a true segment. We have considered the dataset along with the deformations described in for evaluation purpose. From experimentation we have got encouraging results.
|
|
|
Albert Gordo, Jaume Gibert, Ernest Valveny and Marçal Rusiñol. 2010. A Kernel-based Approach to Document Retrieval. 9th IAPR International Workshop on Document Analysis Systems.377–384.
Abstract: In this paper we tackle the problem of document image retrieval by combining a similarity measure between documents and the probability that a given document belongs to a certain class. The membership probability to a specific class is computed using Support Vector Machines in conjunction with similarity measure based kernel applied to structural document representations. In the presented experiments, we use different document representations, both visual and structural, and we apply them to a database of historical documents. We show how our method based on similarity kernels outperforms the usual distance-based retrieval.
|
|
|
Antonio Clavelli, Dimosthenis Karatzas and Josep Llados. 2010. A framework for the assessment of text extraction algorithms on complex colour images. 9th IAPR International Workshop on Document Analysis Systems.19–26.
Abstract: The availability of open, ground-truthed datasets and clear performance metrics is a crucial factor in the development of an application domain. The domain of colour text image analysis (real scenes, Web and spam images, scanned colour documents) has traditionally suffered from a lack of a comprehensive performance evaluation framework. Such a framework is extremely difficult to specify, and corresponding pixel-level accurate information tedious to define. In this paper we discuss the challenges and technical issues associated with developing such a framework. Then, we describe a complete framework for the evaluation of text extraction methods at multiple levels, provide a detailed ground-truth specification and present a case study on how this framework can be used in a real-life situation.
|
|
|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2010. Query Driven Word Retrieval in Graphical Documents. 9th IAPR International Workshop on Document Analysis Systems.191–198.
Abstract: In this paper, we present an approach towards the retrieval of words from graphical document images. In graphical documents, due to presence of multi-oriented characters in non-structured layout, word indexing is a challenging task. The proposed approach uses recognition results of individual components to form character pairs with the neighboring components. An indexing scheme is designed to store the spatial description of components and to access them efficiently. Given a query text word (ascii/unicode format), the character pairs present in it are searched in the document. Next the retrieved character pairs are linked sequentially to form character string. Dynamic programming is applied to find different instances of query words. A string edit distance is used here to match the query word as the objective function. Recognition of multi-scale and multi-oriented character component is done using Support Vector Machine classifier. To consider multi-oriented character strings the features used in the SVM are invariant to character orientation. Experimental results show that the method is efficient to locate a query word from multi-oriented text in graphical documents.
|
|
|
Marçal Rusiñol and Josep Llados. 2010. Efficient Logo Retrieval Through Hashing Shape Context Descriptors. 9th IAPR International Workshop on Document Analysis Systems.215–222.
Abstract: In this paper, we present an approach towards the retrieval of words from graphical document images. In graphical documents, due to presence of multi-oriented characters in non-structured layout, word indexing is a challenging task. The proposed approach uses recognition results of individual components to form character pairs with the neighboring components. An indexing scheme is designed to store the spatial description of components and to access them efficiently. Given a query text word (ascii/unicode format), the character pairs present in it are searched in the document. Next the retrieved character pairs are linked sequentially to form character string. Dynamic programming is applied to find different instances of query words. A string edit distance is used here to match the query word as the objective function. Recognition of multi-scale and multi-oriented character component is done using Support Vector Machine classifier. To consider multi-oriented character strings the features used in the SVM are invariant to character orientation. Experimental results show that the method is efficient to locate a query word from multi-oriented text in graphical documents.
|
|
|
Marçal Rusiñol, Farshad Nourbakhsh, Dimosthenis Karatzas, Ernest Valveny and Josep Llados. 2010. Perceptual Image Retrieval by Adding Color Information to the Shape Context Descriptor. 20th International Conference on Pattern Recognition.1594–1597.
Abstract: In this paper we present a method for the retrieval of images in terms of perceptual similarity. Local color information is added to the shape context descriptor in order to obtain an object description integrating both shape and color as visual cues. We use a color naming algorithm in order to represent the color information from a perceptual point of view. The proposed method has been tested in two different applications, an object retrieval scenario based on color sketch queries and a color trademark retrieval problem. Experimental results show that the addition of the color information significantly outperforms the sole use of the shape context descriptor.
|
|