|
Marçal Rusiñol and Josep Llados. 2009. A Performance Evaluation Protocol for Symbol Spotting Systems in Terms of Recognition and Location Indices. IJDAR, 12(2), 83–96.
Abstract: Symbol spotting systems are intended to retrieve regions of interest from a document image database where the queried symbol is likely to be found. They shall have the ability to recognize and locate graphical symbols in a single step. In this paper, we present a set of measures to evaluate the performance of a symbol spotting system in terms of recognition abilities, location accuracy and scalability. We show that the proposed measures allow to determine the weaknesses and strengths of different methods. In particular we have tested a symbol spotting method based on a set of four different off-the-shelf shape descriptors.
Keywords: Performance evaluation; Symbol Spotting; Graphics Recognition
|
|
|
Miquel Ferrer, Ernest Valveny and F. Serratosa. 2009. Median Graphs: A Genetic Approach based on New Theoretical Properties. PR, 42(9), 2003–2012.
Abstract: Given a set of graphs, the median graph has been theoretically presented as a useful concept to infer a representative of the set. However, the computation of the median graph is a highly complex task and its practical application has been very limited up to now. In this work we present two major contributions. On one side, and from a theoretical point of view, we show new theoretical properties of the median graph. On the other side, using these new properties, we present a new approximate algorithm based on the genetic search, that improves the computation of the median graph. Finally, we perform a set of experiments on real data, where none of the existing algorithms for the median graph computation could be applied up to now due to their computational complexity. With these results, we show how the concept of the median graph can be used in real applications and leaves the box of the only-theoretical concepts, demonstrating, from a practical point of view, that can be a useful tool to represent a set of graphs.
Keywords: Median graph; Genetic search; Maximum common subgraph; Graph matching; Structural pattern recognition
|
|
|
Antonio Clavelli and Dimosthenis Karatzas. 2009. Text Segmentation in Colour Posters from the Spanish Civil War Era. 10th International Conference on Document Analysis and Recognition.181–185.
Abstract: The extraction of textual content from colour documents of a graphical nature is a complicated task. The text can be rendered in any colour, size and orientation while the existence of complex background graphics with repetitive patterns can make its localization and segmentation extremely difficult.
Here, we propose a new method for extracting textual content from such colour images that makes no assumption as to the size of the characters, their orientation or colour, while it is tolerant to characters that do not follow a straight baseline. We evaluate this method on a collection of documents with historical
connotations: the Posters from the Spanish Civil War.
|
|
|
Miquel Ferrer, Dimosthenis Karatzas, Ernest Valveny and Horst Bunke. 2009. A Recursive Embedding Approach to Median Graph Computation. 7th IAPR – TC–15 Workshop on Graph–Based Representations in Pattern Recognition. Springer Berlin Heidelberg, 113–123. (LNCS.)
Abstract: The median graph has been shown to be a good choice to infer a representative of a set of graphs. It has been successfully applied to graph-based classification and clustering. Nevertheless, its computation is extremely complex. Several approaches have been presented up to now based on different strategies. In this paper we present a new approximate recursive algorithm for median graph computation based on graph embedding into vector spaces. Preliminary experiments on three databases show that this new approach is able to obtain better medians than the previous existing approaches.
|
|
|
Miquel Ferrer, Ernest Valveny and F. Serratosa. 2009. Median Graph Computation by means of a Genetic Approach Based on Minimum Common Supergraph and Maximum Common Subraph. 4th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 346–353. (LNCS.)
Abstract: Given a set of graphs, the median graph has been theoretically presented as a useful concept to infer a representative of the set. However, the computation of the median graph is a highly complex task and its practical application has been very limited up to now. In this work we present a new genetic algorithm for the median graph computation. A set of experiments on real data, where none of the existing algorithms for the median graph computation could be applied up to now due to their computational complexity, show that we obtain good approximations of the median graph. Finally, we use the median graph in a real nearest neighbour classification showing that it leaves the box of the only-theoretical concepts and demonstrating, from a practical point of view, that can be a useful tool to represent a set of graphs.
|
|
|
Albert Gordo and Ernest Valveny. 2009. A rotation invariant page layout descriptor for document classification and retrieval. 10th International Conference on Document Analysis and Recognition.481–485.
Abstract: Document classification usually requires of structural features such as the physical layout to obtain good accuracy rates on complex documents. This paper introduces a descriptor of the layout and a distance measure based on the cyclic dynamic time warping which can be computed in O(n2). This descriptor is translation invariant and can be easily modified to be scale and rotation invariant. Experiments with this descriptor and its rotation invariant modification are performed on the Girona archives database and compared against another common layout distance, the minimum weight edge cover. The experiments show that these methods outperform the MWEC both in accuracy and speed, particularly on rotated documents.
|
|
|
Albert Gordo and Ernest Valveny. 2009. The diagonal split: A pre-segmentation step for page layout analysis & classification. 4th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 290–297. (LNCS.)
Abstract: Document classification is an important task in all the processes related to document storage and retrieval. In the case of complex documents, structural features are needed to achieve a correct classification. Unfortunately, physical layout analysis is error prone. In this paper we present a pre-segmentation step based on a divide & conquer strategy that can be used to improve the page segmentation results, independently of the segmentation algorithm used. This pre-segmentation step is evaluated in classification and retrieval using the selective CRLA algorithm for layout segmentation together with a clustering based on the voronoi area diagram, and tested on two different databases, MARG and Girona Archives.
|
|
|
Marçal Rusiñol, Agnes Borras and Josep Llados. 2010. Relational Indexing of Vectorial Primitives for Symbol Spotting in Line-Drawing Images. PRL, 31(3), 188–201.
Abstract: This paper presents a symbol spotting approach for indexing by content a database of line-drawing images. As line-drawings are digital-born documents designed by vectorial softwares, instead of using a pixel-based approach, we present a spotting method based on vector primitives. Graphical symbols are represented by a set of vectorial primitives which are described by an off-the-shelf shape descriptor. A relational indexing strategy aims to retrieve symbol locations into the target documents by using a combined numerical-relational description of 2D structures. The zones which are likely to contain the queried symbol are validated by a Hough-like voting scheme. In addition, a performance evaluation framework for symbol spotting in graphical documents is proposed. The presented methodology has been evaluated with a benchmarking set of architectural documents achieving good performance results.
Keywords: Document image analysis and recognition, Graphics recognition, Symbol spotting ,Vectorial representations, Line-drawings
|
|
|
Marçal Rusiñol and Josep Llados. 2009. Logo Spotting by a Bag-of-words Approach for Document Categorization. 10th International Conference on Document Analysis and Recognition.111–115.
Abstract: In this paper we present a method for document categorization which processes incoming document images such as invoices or receipts. The categorization of these document images is done in terms of the presence of a certain graphical logo detected without segmentation. The graphical logos are described by a set of local features and the categorization of the documents is performed by the use of a bag-of-words model. Spatial coherence rules are added to reinforce the correct category hypothesis, aiming also to spot the logo inside the document image. Experiments which demonstrate the effectiveness of this system on a large set of real data are presented.
|
|
|
Miquel Ferrer, Ernest Valveny, F. Serratosa, I. Bardaji and Horst Bunke. 2009. Graph-based k-means clustering: A comparison of the set versus the generalized median graph. 13th International Conference on Computer Analysis of Images and Patterns. Springer Berlin Heidelberg, 342–350. (LNCS.)
Abstract: In this paper we propose the application of the generalized median graph in a graph-based k-means clustering algorithm. In the graph-based k-means algorithm, the centers of the clusters have been traditionally represented using the set median graph. We propose an approximate method for the generalized median graph computation that allows to use it to represent the centers of the clusters. Experiments on three databases show that using the generalized median graph as the clusters representative yields better results than the set median graph.
|
|