|
Pau Riba, Sounak Dey, Ali Furkan Biten and Josep Llados. 2021. Localizing Infinity-shaped fishes: Sketch-guided object localization in the wild.
Abstract: This work investigates the problem of sketch-guided object localization (SGOL), where human sketches are used as queries to conduct the object localization in natural images. In this cross-modal setting, we first contribute with a tough-to-beat baseline that without any specific SGOL training is able to outperform the previous works on a fixed set of classes. The baseline is useful to analyze the performance of SGOL approaches based on available simple yet powerful methods. We advance prior arts by proposing a sketch-conditioned DETR (DEtection TRansformer) architecture which avoids a hard classification and alleviates the domain gap between sketches and images to localize object instances. Although the main goal of SGOL is focused on object detection, we explored its natural extension to sketch-guided instance segmentation. This novel task allows to move towards identifying the objects at pixel level, which is of key importance in several applications. We experimentally demonstrate that our model and its variants significantly advance over previous state-of-the-art results. All training and testing code of our model will be released to facilitate future researchhttps://github.com/priba/sgol_wild.
|
|
|
Albert Suso, Pau Riba, Oriol Ramos Terrades and Josep Llados. 2021. A Self-supervised Inverse Graphics Approach for Sketch Parametrization. 16th International Conference on Document Analysis and Recognition.28–42. (LNCS.)
Abstract: The study of neural generative models of handwritten text and human sketches is a hot topic in the computer vision field. The landmark SketchRNN provided a breakthrough by sequentially generating sketches as a sequence of waypoints, and more recent articles have managed to generate fully vector sketches by coding the strokes as Bézier curves. However, the previous attempts with this approach need them all a ground truth consisting in the sequence of points that make up each stroke, which seriously limits the datasets the model is able to train in. In this work, we present a self-supervised end-to-end inverse graphics approach that learns to embed each image to its best fit of Bézier curves. The self-supervised nature of the training process allows us to train the model in a wider range of datasets, but also to perform better after-training predictions by applying an overfitting process on the input binary image. We report qualitative an quantitative evaluations on the MNIST and the Quick, Draw! datasets.
|
|
|
Sanket Biswas, Pau Riba, Josep Llados and Umapada Pal. 2021. Graph-Based Deep Generative Modelling for Document Layout Generation. 16th International Conference on Document Analysis and Recognition.525–537. (LNCS.)
Abstract: One of the major prerequisites for any deep learning approach is the availability of large-scale training data. When dealing with scanned document images in real world scenarios, the principal information of its content is stored in the layout itself. In this work, we have proposed an automated deep generative model using Graph Neural Networks (GNNs) to generate synthetic data with highly variable and plausible document layouts that can be used to train document interpretation systems, in this case, specially in digital mailroom applications. It is also the first graph-based approach for document layout generation task experimented on administrative document images, in this case, invoices.
|
|
|
Josep Llados. 2021. The 5G of Document Intelligence. 3rd Workshop on Future of Document Analysis and Recognition.
|
|
|
Mohamed Ali Souibgui, Alicia Fornes, Yousri Kessentini and Beata Megyesi. 2022. Few shots are all you need: A progressive learning approach for low resource handwritten text recognition. PRL, 160, 43–49.
Abstract: Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. In this paper, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols. The method consists of detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from an alphabet, which could differ from the alphabet of the target domain. A second training step is then applied to reduce the gap between the source and the target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the unlabeled data. The evaluation on different datasets shows that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in the following repository: https://github.com/dali92002/HTRbyMatching
|
|
|
Arnau Baro. 2022. Reading Music Systems: From Deep Optical Music Recognition to Contextual Methods. (Ph.D. thesis, IMPRIMA.)
Abstract: The transcription of sheet music into some machine-readable format can be carried out manually. However, the complexity of music notation inevitably leads to burdensome software for music score editing, which makes the whole process
very time-consuming and prone to errors. Consequently, automatic transcription
systems for musical documents represent interesting tools.
Document analysis is the subject that deals with the extraction and processing
of documents through image and pattern recognition. It is a branch of computer
vision. Taking music scores as source, the field devoted to address this task is
known as Optical Music Recognition (OMR). Typically, an OMR system takes an
image of a music score and automatically extracts its content into some symbolic
structure such as MEI or MusicXML.
In this dissertation, we have investigated different methods for recognizing a
single staff section (e.g. scores for violin, flute, etc.), much in the same way as most text recognition research focuses on recognizing words appearing in a given line image. These methods are based in two different methodologies. On the one hand, we present two methods based on Recurrent Neural Networks, in particular, the
Long Short-Term Memory Neural Network. On the other hand, a method based on Sequence to Sequence models is detailed.
Music context is needed to improve the OMR results, just like language models
and dictionaries help in handwriting recognition. For example, syntactical rules
and grammars could be easily defined to cope with the ambiguities in the rhythm.
In music theory, for example, the time signature defines the amount of beats per
bar unit. Thus, in the second part of this dissertation, different methodologies
have been investigated to improve the OMR recognition. We have explored three
different methods: (a) a graphic tree-structure representation, Dendrograms, that
joins, at each level, its primitives following a set of rules, (b) the incorporation of Language Models to model the probability of a sequence of tokens, and (c) graph neural networks to analyze the music scores to avoid meaningless relationships between music primitives.
Finally, to train all these methodologies, and given the method-specificity of
the datasets in the literature, we have created four different music datasets. Two of them are synthetic with a modern or old handwritten appearance, whereas the
other two are real handwritten scores, being one of them modern and the other
old.
|
|
|
Ali Furkan Biten. 2022. A Bitter-Sweet Symphony on Vision and Language: Bias and World Knowledge. (Ph.D. thesis, IMPRIMA.)
Abstract: Vision and Language are broadly regarded as cornerstones of intelligence. Even though language and vision have different aims – language having the purpose of communication, transmission of information and vision having the purpose of constructing mental representations around us to navigate and interact with objects – they cooperate and depend on one another in many tasks we perform effortlessly. This reliance is actively being studied in various Computer Vision tasks, e.g. image captioning, visual question answering, image-sentence retrieval, phrase grounding, just to name a few. All of these tasks share the inherent difficulty of the aligning the two modalities, while being robust to language
priors and various biases existing in the datasets. One of the ultimate goal for vision and language research is to be able to inject world knowledge while getting rid of the biases that come with the datasets. In this thesis, we mainly focus on two vision and language tasks, namely Image Captioning and Scene-Text Visual Question Answering (STVQA).
In both domains, we start by defining a new task that requires the utilization of world knowledge and in both tasks, we find that the models commonly employed are prone to biases that exist in the data. Concretely, we introduce new tasks and discover several problems that impede performance at each level and provide remedies or possible solutions in each chapter: i) We define a new task to move beyond Image Captioning to Image Interpretation that can utilize Named Entities in the form of world knowledge. ii) We study the object hallucination problem in classic Image Captioning systems and develop an architecture-agnostic solution. iii) We define a sub-task of Visual Question Answering that requires reading the text in the image (STVQA), where we highlight the limitations of current models. iv) We propose an architecture for the STVQA task that can point to the answer in the image and show how to combine it with classic VQA models. v) We show how far language can get us in STVQA and discover yet another bias which causes the models to disregard the image while doing Visual Question Answering.
|
|
|
Andres Mafla. 2022. Leveraging Scene Text Information for Image Interpretation. (Ph.D. thesis, IMPRIMA.)
Abstract: Until recently, most computer vision models remained illiterate, largely ignoring the semantically rich and explicit information contained in scene text. Recent progress in scene text detection and recognition has recently allowed exploring its role in a diverse set of open computer vision problems, e.g. image classification, image-text retrieval, image captioning, and visual question answering to name a few. The explicit semantics of scene text closely requires specific modeling similar to language. However, scene text is a particular signal that has to be interpreted according to a comprehensive perspective that encapsulates all the visual cues in an image. Incorporating this information is a straightforward task for humans, but if we are unfamiliar with a language or scripture, achieving a complete world understanding is impossible (e.a. visiting a foreign country with a different alphabet). Despite the importance of scene text, modeling it requires considering the several ways in which scene text interacts with an image, processing and fusing an additional modality. In this thesis, we mainly focus
on two tasks, scene text-based fine-grained image classification, and cross-modal retrieval. In both studied tasks we identify existing limitations in current approaches and propose plausible solutions. Concretely, in each chapter: i) We define a compact way to embed scene text that generalizes to unseen words at training time while performing in real-time. ii) We incorporate the previously learned scene text embedding to create an image-level descriptor that overcomes optical character recognition (OCR) errors which is well-suited to the fine-grained image classification task. iii) We design a region-level reasoning network that learns the interaction through semantics among salient visual regions and scene text instances. iv) We employ scene text information in image-text matching and introduce the Scene Text Aware Cross-Modal retrieval StacMR task. We gather a dataset that incorporates scene text and design a model suited for the newly studied modality. v) We identify the drawbacks of current retrieval metrics in cross-modal retrieval. An image captioning metric is proposed as a way of better evaluating semantics in retrieved results. Ample experimentation shows that incorporating such semantics into a model yields better semantic results while
requiring significantly less data to converge.
|
|
|
Mohamed Ali Souibgui. 2022. Document Image Enhancement and Recognition in Low Resource Scenarios: Application to Ciphers and Handwritten Text. (Ph.D. thesis, IMPRIMA.)
Abstract: In this thesis, we propose different contributions with the goal of enhancing and recognizing historical handwritten document images, especially the ones with rare scripts, such as cipher documents.
In the first part, some effective end-to-end models for Document Image Enhancement (DIE) using deep learning models were presented. First, Generative Adversarial Networks (cGAN) for different tasks (document clean-up, binarization, deblurring, and watermark removal) were explored. Next, we further improve the results by recovering the degraded document images into a clean and readable form by integrating a text recognizer into the cGAN model to promote the generated document image to be more readable. Afterward, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion.
The second part of the thesis addresses Handwritten Text Recognition (HTR) in low resource scenarios, i.e. when only few labeled training data is available. We propose novel methods for recognizing ciphers with rare scripts. First, a few-shot object detection based method was proposed. Then, we incorporate a progressive learning strategy that automatically assignspseudo-labels to a set of unlabeled data to reduce the human labor of annotating few pages while maintaining the good performance of the model. Secondly, a data generation technique based on Bayesian Program Learning (BPL) is proposed to overcome the lack of data in such rare scripts. Thirdly, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE). This latter self-supervised model is designed to tackle two tasks, text recognition and document image enhancement. The proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time, it requires substantially fewer data samples to converge.
In the third part of the thesis, we analyze, from the user perspective, the usage of HTR systems in low resource scenarios. This contrasts with the usual research on HTR, which often focuses on technical aspects only and rarely devotes efforts on implementing software tools for scholars in Humanities.
|
|
|
Sergi Garcia Bordils and 7 others. 2022. Out-of-Vocabulary Challenge Report. Proceedings European Conference on Computer Vision Workshops.359–375. (LNCS.)
Abstract: This paper presents final results of the Out-Of-Vocabulary 2022 (OOV) challenge. The OOV contest introduces an important aspect that is not commonly studied by Optical Character Recognition (OCR) models, namely, the recognition of unseen scene text instances at training time. The competition compiles a collection of public scene text datasets comprising of 326,385 images with 4,864,405 scene text instances, thus covering a wide range of data distributions. A new and independent validation and test set is formed with scene text instances that are out of vocabulary at training time. The competition was structured in two tasks, end-to-end and cropped scene text recognition respectively. A thorough analysis of results from baselines and different participants is presented. Interestingly, current state-of-the-art models show a significant performance gap under the newly studied setting. We conclude that the OOV dataset proposed in this challenge will be an essential area to be explored in order to develop scene text models that achieve more robust and generalized predictions.
|
|