|
Marçal Rusiñol, J. Chazalon and Jean-Marc Ogier. 2014. Combining Focus Measure Operators to Predict OCR Accuracy in Mobile-Captured Document Images. 11th IAPR International Workshop on Document Analysis and Systems.181–185.
Abstract: Mobile document image acquisition is a new trend raising serious issues in business document processing workflows. Such digitization procedure is unreliable, and integrates many distortions which must be detected as soon as possible, on the mobile, to avoid paying data transmission fees, and losing information due to the inability to re-capture later a document with temporary availability. In this context, out-of-focus blur is major issue: users have no direct control over it, and it seriously degrades OCR recognition. In this paper, we concentrate on the estimation of focus quality, to ensure a sufficient legibility of a document image for OCR processing. We propose two contributions to improve OCR accuracy prediction for mobile-captured document images. First, we present 24 focus measures, never tested on document images, which are fast to compute and require no training. Second, we show that a combination of those measures enables state-of-the art performance regarding the correlation with OCR accuracy. The resulting approach is fast, robust, and easy to implement in a mobile device. Experiments are performed on a public dataset, and precise details about image processing are given.
|
|
|
Marçal Rusiñol, J. Chazalon and Jean-Marc Ogier. 2014. Normalisation et validation d'images de documents capturées en mobilité. Colloque International Francophone sur l'Écrit et le Document.109–124.
Abstract: Mobile document image acquisition integrates many distortions which must be corrected or detected on the device, before the document becomes unavailable or paying data transmission fees. In this paper, we propose a system to correct perspective and illumination issues, and estimate the sharpness of the image for OCR recognition. The correction step relies on fast and accurate border detection followed by illumination normalization. Its evaluation on a private dataset shows a clear improvement on OCR accuracy. The quality assessment
step relies on a combination of focus measures. Its evaluation on a public dataset shows that this simple method compares well to state of the art, learning-based methods which cannot be embedded on a mobile, and outperforms metric-based methods.
Keywords: mobile document image acquisition; perspective correction; illumination correction; quality assessment; focus measure; OCR accuracy prediction
|
|
|
P. Wang, V. Eglin, C. Garcia, C. Largeron, Josep Llados and Alicia Fornes. 2014. Représentation par graphe de mots manuscrits dans les images pour la recherche par similarité. Colloque International Francophone sur l'Écrit et le Document.233–248.
Abstract: Effective information retrieval on handwritten document images has always been
a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labeled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment results introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods.
Keywords: word spotting; graph-based representation; shape context description; graph edit distance; DTW; block merging; query by example
|
|
|
Antonio Clavelli. 2014. A computational model of eye guidance, searching for text in real scene images. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Searching for text objects in real scene images is an open problem and a very active computer vision research area. A large number of methods have been proposed tackling the text search as extension of the ones from the document analysis field or inspired by general purpose object detection methods. However the general problem of object search in real scene images remains an extremely challenging problem due to the huge variability in object appearance. This thesis builds on top of the most recent findings in the visual attention literature presenting a novel computational model of eye guidance aiming to better describe text object search in real scene images.
First are presented the relevant state-of-the-art results from the visual attention literature regarding eye movements and visual search. Relevant models of attention are discussed and integrated with recent observations on the role of top-down constraints and the emerging need for a layered model of attention in which saliency is not the only factor guiding attention. Visual attention is then explained by the interaction of several modulating factors, such as objects, value, plans and saliency. Then we introduce our probabilistic formulation of attention deployment in real scene. The model is based on the rationale that oculomotor control depends on two interacting but distinct processes: an attentional process that assigns value to the sources of information and motor process that flexibly links information with action.
In such framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the reward of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects.
In the experimental section the model is tested in laboratory condition, comparing model simulations with data from eye tracking experiments. The comparison is qualitative in terms of observable scan paths and quantitative in terms of statistical similarity of gaze shift amplitude. Experiments are performed using eye tracking data from both a publicly available dataset of face and text and from newly performed eye-tracking experiments on a dataset of street view pictures containing text. The last part of this thesis is dedicated to study the extent to which the proposed model can account for human eye movements in a low constrained setting. We used a mobile eye tracking device and an ad-hoc developed methodology to compare model simulated eye data with the human eye data from mobile eye tracking recordings. Such setting allow to test the model in an incomplete visual information condition, reproducing a close to real-life search task.
|
|
|
Jon Almazan. 2014. Learning to Represent Handwritten Shapes and Words for Matching and Recognition. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Writing is one of the most important forms of communication and for centuries, handwriting had been the most reliable way to preserve knowledge. However, despite the recent development of printing houses and electronic devices, handwriting is still broadly used for taking notes, doing annotations, or sketching ideas.
Transferring the ability of understanding handwritten text or recognizing handwritten shapes to computers has been the goal of many researches due to its huge importance for many different fields. However, designing good representations to deal with handwritten shapes, e.g. symbols or words, is a very challenging problem due to the large variability of these kinds of shapes. One of the consequences of working with handwritten shapes is that we need representations to be robust, i.e., able to adapt to large intra-class variability. We need representations to be discriminative, i.e., able to learn what are the differences between classes. And, we need representations to be efficient, i.e., able to be rapidly computed and compared. Unfortunately, current techniques of handwritten shape representation for matching and recognition do not fulfill some or all of these requirements.
Through this thesis we focus on the problem of learning to represent handwritten shapes aimed at retrieval and recognition tasks. Concretely, on the first part of the thesis, we focus on the general problem of representing any kind of handwritten shape. We first present a novel shape descriptor based on a deformable grid that deals with large deformations by adapting to the shape and where the cells of the grid can be used to extract different features. Then, we propose to use this descriptor to learn statistical models, based on the Active Appearance Model, that jointly learns the variability in structure and texture of a given class. Then, on the second part, we focus on a concrete application, the problem of representing handwritten words, for the tasks of word spotting, where the goal is to find all instances of a query word in a dataset of images, and recognition. First, we address the segmentation-free problem and propose an unsupervised, sliding-window-based approach that achieves state-of- the-art results in two public datasets. Second, we address the more challenging multi-writer problem, where the variability in words exponentially increases. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace, and where those that represent the same word are close together. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. This leads to a low-dimensional, unified representation of word images and strings, resulting in a method that allows one to perform either image and text searches, as well as image transcription, in a unified framework. We evaluate our methods on different public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
|
|
|
David Fernandez. 2014. Contextual Word Spotting in Historical Handwritten Documents. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: There are countless collections of historical documents in archives and libraries that contain plenty of valuable information for historians and researchers. The extraction of this information has become a central task among the Document Analysis researches and practitioners.
There is an increasing interest to digital preserve and provide access to these kind of documents. But only the digitalization is not enough for the researchers. The extraction and/or indexation of information of this documents has had an increased interest among researchers. In many cases, and in particular in historical manuscripts, the full transcription of these documents is extremely dicult due the inherent deciencies: poor physical preservation, dierent writing styles, obsolete languages, etc. Word spotting has become a popular an ecient alternative to full transcription. It inherently involves a high level of degradation in the images. The search of words is holistically
formulated as a visual search of a given query shape in a larger image, instead of recognising the input text and searching the query word with an ascii string comparison. But the performance of classical word spotting approaches depend on the degradation level of the images being unacceptable in many cases . In this thesis we have proposed a novel paradigm called contextual word spotting method that uses the contextual/semantic information to achieve acceptable results whereas classical word spotting does not reach. The contextual word spotting framework proposed in this thesis is a segmentation-based word spotting approach, so an ecient word segmentation is needed. Historical handwritten
documents present some common diculties that can increase the diculties the extraction of the words. We have proposed a line segmentation approach that formulates the problem as nding the central part path in the area between two consecutive lines. This is solved as a graph traversal problem. A path nding algorithm is used to nd the optimal path in a graph, previously computed, between the text lines. Once the text lines are extracted, words are localized inside the text lines using a word segmentation technique from the state of the
art. Classical word spotting approaches can be improved using the contextual information of the documents. We have introduced a new framework, oriented to handwritten documents that present a highly structure, to extract information making use of context. The framework is an ecient tool for semi-automatic transcription that uses the contextual information to achieve better results than classical word spotting approaches. The contextual information is
automatically discovered by recognizing repetitive structures and categorizing all the words according to semantic classes. The most frequent words in each semantic cluster are extracted and the same text is used to transcribe all them. The experimental results achieved in this thesis outperform classical word spotting approaches demonstrating the suitability of the proposed ensemble architecture for spotting words in historical handwritten documents using contextual information.
|
|
|
Lluis Pere de las Heras. 2014. Relational Models for Visual Understanding of Graphical Documents. Application to Architectural Drawings. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Graphical documents express complex concepts using a visual language. This language consists of a vocabulary (symbols) and a syntax (structural relations between symbols) that articulate a semantic meaning in a certain context. Therefore, the automatic interpretation by computers of these sort of documents entails three main steps: the detection of the symbols, the extraction of the structural relations between these symbols, and the modeling of the knowledge that permits the extraction of the semantics. Dierent domains in graphical documents include: architectural and engineering drawings, maps, owcharts, etc.
Graphics Recognition in particular and Document Image Analysis in general are
born from the industrial need of interpreting a massive amount of digitalized documents after the emergence of the scanner. Although many years have passed, the graphical document understanding problem still seems to be far from being solved. The main reason is that the vast majority of the systems in the literature focus on very specic problems, where the domain of the document dictates the implementation of the interpretation. As a result, it is dicult to reuse these strategies on dierent data and on dierent contexts, hindering thus the natural progress in the eld.
In this thesis, we face the graphical document understanding problem by proposing several relational models at dierent levels that are designed from a generic perspective. Firstly, we introduce three dierent strategies for the detection of symbols. The first method tackles the problem structurally, wherein general knowledge of the domain guides the detection. The second is a statistical method that learns the graphical appearance of the symbols and easily adapts to the big variability of the problem. The third method is a combination of the previous two methods that inherits their respective strengths, i.e. copes the big variability and does not need annotated data. Secondly, we present two relational strategies that tackle the problem of the visual context extraction. The first one is a full bottom up method that heuristically searches in a graph representation the contextual relations between symbols. Contrarily, the second is syntactic method that models probabilistically the structure of the documents. It automatically learns the model, which guides the inference algorithm to encounter the best structural representation for a given input. Finally, we construct a knowledge-based model consisting of an ontological denition of the domain and real data. This model permits to perform contextual reasoning and to detect semantic inconsistencies within the data. We evaluate the suitability of the proposed contributions in the framework of floor plan interpretation. Since there is no standard in the modeling of these documents there exists an enormous notation variability from plan to plan in terms of vocabulary and syntax. Therefore, floor plan interpretation is a relevant task in the graphical document understanding problem. It is also worth to mention that we make freely available all the resources used in this thesis {the data, the tool used to generate the data, and the evaluation scripts{ with the aim of fostering research in the graphical document understanding task.
|
|
|
Hongxing Gao. 2015. Focused Structural Document Image Retrieval in Digital Mailroom Applications. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: In this work, we develop a generic framework that is able to handle the document retrieval problem in various scenarios such as searching for full page matches or retrieving the counterparts for specific document areas, focusing on their structural similarity or letting their visual resemblance to play a dominant role. Based on the spatial indexing technique, we propose to search for matches of local key-region pairs carrying both structural and visual information from the collection while a scheme allowing to adjust the relative contribution of structural and visual similarity is presented.
Based on the fact that the structure of documents is tightly linked with the distance among their elements, we firstly introduce an efficient detector named Distance Transform based Maximally Stable Extremal Regions (DTMSER). We illustrate that this detector is able to efficiently extract the structure of a document image as a dendrogram (hierarchical tree) of multi-scale key-regions that roughly correspond to letters, words and paragraphs. We demonstrate that, without benefiting from the structure information, the key-regions extracted by the DTMSER algorithm achieve better results comparing with state-of-the-art methods while much less amount of key-regions are employed.
We subsequently propose a pair-wise Bag of Words (BoW) framework to efficiently embed the explicit structure extracted by the DTMSER algorithm. We represent each document as a list of key-region pairs that correspond to the edges in the dendrogram where inclusion relationship is encoded. By employing those structural key-region pairs as the pooling elements for generating the histogram of features, the proposed method is able to encode the explicit inclusion relations into a BoW representation. The experimental results illustrate that the pair-wise BoW, powered by the embedded structural information, achieves remarkable improvement over the conventional BoW and spatial pyramidal BoW methods.
To handle various retrieval scenarios in one framework, we propose to directly query a series of key-region pairs, carrying both structure and visual information, from the collection. We introduce the spatial indexing techniques to the document retrieval community to speed up the structural relationship computation for key-region pairs. We firstly test the proposed framework in a full page retrieval scenario where structurally similar matches are expected. In this case, the pair-wise querying method achieves notable improvement over the BoW and spatial pyramidal BoW frameworks. Furthermore, we illustrate that the proposed method is also able to handle focused retrieval situations where the queries are defined as a specific interesting partial areas of the images. We examine our method on two types of focused queries: structure-focused and exact queries. The experimental results show that, the proposed generic framework obtains nearly perfect precision on both types of focused queries while it is the first framework able to tackle structure-focused queries, setting a new state of the art in the field.
Besides, we introduce a line verification method to check the spatial consistency among the matched key-region pairs. We propose a computationally efficient version of line verification through a two step implementation. We first compute tentative localizations of the query and subsequently employ them to divide the matched key-region pairs into several groups, then line verification is performed within each group while more precise bounding boxes are computed. We demonstrate that, comparing with the standard approach (based on RANSAC), the line verification proposed generally achieves much higher recall with slight loss on precision on specific queries.
|
|
|
Carles Sanchez, Oriol Ramos Terrades, Patricia Marquez, Enric Marti, J.Roncaries and Debora Gil. 2015. Automatic evaluation of practices in Moodle for Self Learning in Engineering.
|
|
|
Olivier Lefebvre and 6 others. 2015. Monitoring neuromotricity on-line: a cloud computing approach. 17th Conference of the International Graphonomics Society IGS2015.
Abstract: The goal of our experiment is to develop a useful and accessible tool that can be used to evaluate a patient's health by analyzing handwritten strokes. We use a cloud computing approach to analyze stroke data sampled on a commercial tablet working on the Android platform and a distant server to perform complex calculations using the Delta and Sigma lognormal algorithms. A Google Drive account is used to store the data and to ease the development of the project. The communication between the tablet, the cloud and the server is encrypted to ensure biomedical information confidentiality. Highly parameterized biomedical tests are implemented on the tablet as well as a free drawing test to evaluate the validity of the data acquired by the first test compared to the second one. A blurred shape model descriptor pattern recognition algorithm is used to classify the data obtained by the free drawing test. The functions presented in this paper are still currently under development and other improvements are needed before launching the application in the public domain.
|
|