|
Josep Llados, Daniel Lopresti and Seiichi Uchida, eds. 2021. 16th International Conference, 2021, Proceedings, Part IV. Springer Cham. (LNCS.)
Abstract: This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.
The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
|
|
|
Mohamed Ali Souibgui, Y.Kessentini and Alicia Fornes. 2020. A conditional GAN based approach for distorted camera captured documents recovery. 4th Mediterranean Conference on Pattern Recognition and Artificial Intelligence.
|
|
|
Albert Berenguel, Oriol Ramos Terrades, Josep Llados and Cristina Cañero. 2019. Recurrent Comparator with attention models to detect counterfeit documents. 15th International Conference on Document Analysis and Recognition.
Abstract: This paper is focused on the detection of counterfeit documents via the recurrent comparison of the security textured background regions of two images. The main contributions are twofold: first we apply and adapt a recurrent comparator architecture with attention mechanism to the counterfeit detection task, which constructs a representation of the background regions by recurrently condition the next observation, learning the difference between genuine and counterfeit images through iterative glimpses. Second we propose a new counterfeit document dataset to ensure the generalization of the learned model towards the detection of the lack of resolution during the counterfeit manufacturing. The presented network, outperforms state-of-the-art classification approaches for counterfeit detection as demonstrated in the evaluation.
|
|
|
Fernando Vilariño. 2019. Library Living Lab, Numérisation 3D des chapiteaux du cloître de Saint-Cugat : des citoyens co- créant le nouveau patrimoine culturel numérique. Intersectorialité et approche Living Labs. Entretiens Jacques-Cartier.
|
|
|
Fernando Vilariño. 2019. Public Libraries Exploring how technology transforms the cultural experience of people. Workshop on Social Impact of AI. Open Living Lab Days Conference..
|
|
|
Fernando Vilariño. 2020. Unveiling the Social Impact of AI. Workshop at Digital Living Lab Days Conference.
|
|
|
Fernando Vilariño. 2019. 3D Scanning of Capitals at Library Living Lab.
|
|
|
Kai Wang, Luis Herranz, Anjan Dutta and Joost Van de Weijer. 2020. Bookworm continual learning: beyond zero-shot learning and continual learning. Workshop TASK-CV 2020.
Abstract: We propose bookworm continual learning(BCL), a flexible setting where unseen classes can be inferred via a semantic model, and the visual model can be updated continually. Thus BCL generalizes both continual learning (CL) and zero-shot learning (ZSL). We also propose the bidirectional imagination (BImag) framework to address BCL where features of both past and future classes are generated. We observe that conditioning the feature generator on attributes can actually harm the continual learning ability, and propose two variants (joint class-attribute conditioning and asymmetric generation) to alleviate this problem.
|
|
|
Debora Gil, Oriol Ramos Terrades and Raquel Perez. 2020. Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution. Women in Geometry and Topology.
|
|
|
Oriol Ramos Terrades, Albert Berenguel and Debora Gil. 2020. A flexible outlier detector based on a topology given by graph communities.
Abstract: Outlier, or anomaly, detection is essential for optimal performance of machine learning methods and statistical predictive models. It is not just a technical step in a data cleaning process but a key topic in many fields such as fraudulent document detection, in medical applications and assisted diagnosis systems or detecting security threats. In contrast to population-based methods, neighborhood based local approaches are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. However, a main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters. This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world data sets show that our approach overall outperforms, both, local and global strategies in multi and single view settings.
|
|