
Albert Gordo. 2009. A Cyclic Page Layout Descriptor for Document Classification & Retrieval. (Master's thesis, .)



Albert Gordo. 2013. Document Image Representation, Classification and Retrieval in LargeScale Domains. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Despite the “paperless office” ideal that started in the decade of the seventies, businesses still strive against an increasing amount of paper documentation. Companies still receive huge amounts of paper documentation that need to be analyzed and processed, mostly in a manual way. A solution for this task consists in, first, automatically scanning the incoming documents. Then, document images can be analyzed and information can be extracted from the data. Documents can also be automatically dispatched to the appropriate workflows, used to retrieve similar documents in the dataset to transfer information, etc.
Due to the nature of this “digital mailroom”, we need document representation methods to be general, i.e., able to cope with very different types of documents. We need the methods to be sound, i.e., able to cope with unexpected types of documents, noise, etc. And, we need to methods to be scalable, i.e., able to cope with thousands or millions of documents that need to be processed, stored, and consulted. Unfortunately, current techniques of document representation, classification and retrieval are not apt for this digital mailroom framework, since they do not fulfill some or all of these requirements.
Through this thesis we focus on the problem of document representation aimed at classification and retrieval tasks under this digital mailroom framework. We first propose a novel document representation based on runlength histograms, and extend it to cope with more complex documents such as multiplepage documents, or documents that contain more sources of information such as extracted OCR text. Then we focus on the scalability requirements and propose a novel binarization method which we dubbed PCAE, as well as two general asymmetric distances between binary embeddings that can significantly improve the retrieval results at a minimal extra computational cost. Finally, we note the importance of supervised learning when performing largescale retrieval, and study several approaches that can significantly boost the results at no extra cost at query time.



JeanMarc Ogier, Wenyin Liu and Josep Llados, eds. 2010. Graphics Recognition: Achievements, Challenges, and Evolution. Springer Link. (LNCS.)



Marçal Rusiñol, R.Roset, Josep Llados and C.Montaner. 2011. Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation. In Proceedings of the Sixth International Workshop on Digital Technologies in Cartographic Heritage.



Dimosthenis Karatzas and Ch. Lioutas. 1998. Software Package Development for Electron Diffraction Image Analysis. Proceedings of the XIV Solid State Physics National Conference.



Marçal Rusiñol and 7 others. 2012. CVCUAB's participation in the Flowchart Recognition Task of CLEFIP 2012. Conference and Labs of the Evaluation Forum.



Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2012. Text/graphic separation using a sparse representation with multilearned dictionaries. 21st International Conference on Pattern Recognition.
Abstract: In this paper, we propose a new approach to extract text regions from graphical documents. In our method, we first empirically construct two sequences of learned dictionaries for the text and graphical parts respectively. Then, we compute the sparse representations of all different sizes and nonoverlapped document patches in these learned dictionaries. Based on these representations, each patch can be classified into the text or graphic category by comparing its reconstruction errors. Samesized patches in one category are then merged together to define the corresponding text or graphic layers which are combined to createfinal text/graphic layer. Finally, in a postprocessing step, text regions are further filtered out by using some learned thresholds.
Keywords: Graphics Recognition; Layout Analysis; Document Understandin



Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2012. Noise suppression over bilevel graphical documents using a sparse representation. Colloque International Francophone sur l'Écrit et le Document.



Jaume Gibert. 2012. Vector Space Embedding of Graphs via Statistics of Labelling Information. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graphbased representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyse patterns.
Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding.
In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.



Jaume Gibert. 2009. Learning structural representations and graph matching paradigms in the context of object recognition. (Master's thesis, .)

