|
M. Visani, V.C.Kieu, Alicia Fornes and N.Journet. 2013. The ICDAR 2013 Music Scores Competition: Staff Removal. 12th International Conference on Document Analysis and Recognition.1439–1443.
Abstract: The first competition on music scores that was organized at ICDAR in 2011 awoke the interest of researchers, who participated both at staff removal and writer identification tasks. In this second edition, we focus on the staff removal task and simulate a real case scenario: old music scores. For this purpose, we have generated a new set of images using two kinds of degradations: local noise and 3D distortions. This paper describes the dataset, distortion methods, evaluation metrics, the participant's methods and the obtained results.
|
|
|
Josep Llados, Horst Bunke and Enric Marti. 1997. Finding rotational symmetries by cyclic string matching. PRL, 18(14), 1435–1442.
Abstract: Symmetry is an important shape feature. In this paper, a simple and fast method to detect perfect and distorted rotational symmetries of 2D objects is described. The boundary of a shape is polygonally approximated and represented as a string. Rotational symmetries are found by cyclic string matching between two identical copies of the shape string. The set of minimum cost edit sequences that transform the shape string to a cyclically shifted version of itself define the rotational symmetry and its order. Finally, a modification of the algorithm is proposed to detect reflectional symmetries. Some experimental results are presented to show the reliability of the proposed algorithm
Keywords: Rotational symmetry; Reflectional symmetry; String matching
|
|
|
Sergio Escalera, Alicia Fornes, O. Pujol, Petia Radeva, Gemma Sanchez and Josep Llados. 2009. Blurred Shape Model for Binary and Grey-level Symbol Recognition. PRL, 30(15), 1424–1433.
Abstract: Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance.
|
|
|
Ali Furkan Biten, Andres Mafla, Lluis Gomez and Dimosthenis Karatzas. 2022. Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching. Winter Conference on Applications of Computer Vision.1391–1400.
Abstract: The task of image-text matching aims to map representations from different modalities into a common joint visual-textual embedding. However, the most widely used datasets for this task, MSCOCO and Flickr30K, are actually image captioning datasets that offer a very limited set of relationships between images and sentences in their ground-truth annotations. This limited ground truth information forces us to use evaluation metrics based on binary relevance: given a sentence query we consider only one image as relevant. However, many other relevant images or captions may be present in the dataset. In this work, we propose two metrics that evaluate the degree of semantic relevance of retrieved items, independently of their annotated binary relevance. Additionally, we incorporate a novel strategy that uses an image captioning metric, CIDEr, to define a Semantic Adaptive Margin (SAM) to be optimized in a standard triplet loss. By incorporating our formulation to existing models, a large improvement is obtained in scenarios where available training data is limited. We also demonstrate that the performance on the annotated image-caption pairs is maintained while improving on other non-annotated relevant items when employing the full training set. The code for our new metric can be found at github. com/furkanbiten/ncsmetric and the model implementation at github. com/andrespmd/semanticadaptive_margin.
Keywords: Measurement; Training; Integrated circuits; Annotations; Semantics; Training data; Semisupervised learning
|
|
|
Alicia Fornes and 6 others. 2017. ICDAR2017 Competition on Information Extraction in Historical Handwritten Records. 14th International Conference on Document Analysis and Recognition.1389–1394.
Abstract: The extraction of relevant information from historical handwritten document collections is one of the key steps in order to make these manuscripts available for access and searches. In this competition, the goal is to detect the named entities and assign each of them a semantic category, and therefore, to simulate the filling in of a knowledge database. This paper describes the dataset, the tasks, the evaluation metrics, the participants methods and the results.
|
|
|
Ali Furkan Biten, Lluis Gomez and Dimosthenis Karatzas. 2022. Let there be a clock on the beach: Reducing Object Hallucination in Image Captioning. Winter Conference on Applications of Computer Vision.1381–1390.
Abstract: Explaining an image with missing or non-existent objects is known as object bias (hallucination) in image captioning. This behaviour is quite common in the state-of-the-art captioning models which is not desirable by humans. To decrease the object hallucination in captioning, we propose three simple yet efficient training augmentation method for sentences which requires no new training data or increase
in the model size. By extensive analysis, we show that the proposed methods can significantly diminish our models’ object bias on hallucination metrics. Moreover, we experimentally demonstrate that our methods decrease the dependency on the visual features. All of our code, configuration files and model weights are available online.
Keywords: Measurement; Training; Visualization; Analytical models; Computer vision; Computational modeling; Training data
|
|
|
Albert Gordo, Alicia Fornes and Ernest Valveny. 2013. Writer identification in handwritten musical scores with bags of notes. PR, 46(5), 1337–1345.
Abstract: Writer Identification is an important task for the automatic processing of documents. However, the identification of the writer in graphical documents is still challenging. In this work, we adapt the Bag of Visual Words framework to the task of writer identification in handwritten musical scores. A vanilla implementation of this method already performs comparably to the state-of-the-art. Furthermore, we analyze the effect of two improvements of the representation: a Bhattacharyya embedding, which improves the results at virtually no extra cost, and a Fisher Vector representation that very significantly improves the results at the cost of a more complex and costly representation. Experimental evaluation shows results more than 20 points above the state-of-the-art in a new, challenging dataset.
|
|
|
L. Rothacker, Marçal Rusiñol and G.A. Fink. 2013. Bag-of-Features HMMs for segmentation-free word spotting in handwritten documents. 12th International Conference on Document Analysis and Recognition.1305–1309.
Abstract: Recent HMM-based approaches to handwritten word spotting require large amounts of learning samples and mostly rely on a prior segmentation of the document. We propose to use Bag-of-Features HMMs in a patch-based segmentation-free framework that are estimated by a single sample. Bag-of-Features HMMs use statistics of local image feature representatives. Therefore they can be considered as a variant of discrete HMMs allowing to model the observation of a number of features at a point in time. The discrete nature enables us to estimate a query model with only a single example of the query provided by the user. This makes our method very flexible with respect to the availability of training data. Furthermore, we are able to outperform state-of-the-art results on the George Washington dataset.
|
|
|
Ekta Vats, Anders Hast and Alicia Fornes. 2019. Training-Free and Segmentation-Free Word Spotting using Feature Matching and Query Expansion. 15th International Conference on Document Analysis and Recognition.1294–1299.
Abstract: Historical handwritten text recognition is an interesting yet challenging problem. In recent times, deep learning based methods have achieved significant performance in handwritten text recognition. However, handwriting recognition using deep learning needs training data, and often, text must be previously segmented into lines (or even words). These limitations constrain the application of HTR techniques in document collections, because training data or segmented words are not always available. Therefore, this paper proposes a training-free and segmentation-free word spotting approach that can be applied in unconstrained scenarios. The proposed word spotting framework is based on document query word expansion and relaxed feature matching algorithm, which can easily be parallelised. Since handwritten words posses distinct shape and characteristics, this work uses a combination of different keypoint detectors
and Fourier-based descriptors to obtain a sufficient degree of relaxed matching. The effectiveness of the proposed method is empirically evaluated on well-known benchmark datasets using standard evaluation measures. The use of informative features along with query expansion significantly contributed in efficient performance of the proposed method.
Keywords: Word spotting; Segmentation-free; Trainingfree; Query expansion; Feature matching
|
|
|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2011. Document Seal Detection Using Ght and Character Proximity Graphs. PR, 44(6), 1282–1295.
Abstract: This paper deals with automatic detection of seal (stamp) from documents with cluttered background. Seal detection involves a difficult challenge due to its multi-oriented nature, arbitrary shape, overlapping of its part with signature, noise, etc. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors computed from recognition result of individual connected components (characters). Scale and rotation invariant features are used in a Support Vector Machine (SVM) classifier to recognize multi-scale and multi-oriented text characters. The concept of generalized Hough transform (GHT) is used to detect the seal and a voting scheme is designed for finding possible location of the seal in a document based on the spatial feature descriptor of neighboring component pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal in a document. Experiment is performed in an archive of historical documents of handwritten/printed English text. Experimental results show that the method is robust in locating seal instances of arbitrary shape and orientation in documents, and also efficient in indexing a collection of documents for retrieval purposes.
Keywords: Seal recognition; Graphical symbol spotting; Generalized Hough transform; Multi-oriented character recognition
|
|