|
Adria Molina, Lluis Gomez, Oriol Ramos Terrades and Josep Llados. 2022. A Generic Image Retrieval Method for Date Estimation of Historical Document Collections. Document Analysis Systems.15th IAPR International Workshop, (DAS2022).583–597.
Abstract: Date estimation of historical document images is a challenging problem, with several contributions in the literature that lack of the ability to generalize from one dataset to others. This paper presents a robust date estimation system based in a retrieval approach that generalizes well in front of heterogeneous collections. We use a ranking loss function named smooth-nDCG to train a Convolutional Neural Network that learns an ordination of documents for each problem. One of the main usages of the presented approach is as a tool for historical contextual retrieval. It means that scholars could perform comparative analysis of historical images from big datasets in terms of the period where they were produced. We provide experimental evaluation on different types of documents from real datasets of manuscript and newspaper images.
Keywords: Date estimation; Document retrieval; Image retrieval; Ranking loss; Smooth-nDCG
|
|
|
Miquel Ferrer, Ernest Valveny and F. Serratosa. 2009. Median graph: A new exact algorithm using a distance based on the maximum common subgraph. PRL, 30(5), 579–588.
Abstract: Median graphs have been presented as a useful tool for capturing the essential information of a set of graphs. Nevertheless, computation of optimal solutions is a very hard problem. In this work we present a new and more efficient optimal algorithm for the median graph computation. With the use of a particular cost function that permits the definition of the graph edit distance in terms of the maximum common subgraph, and a prediction function in the backtracking algorithm, we reduce the size of the search space, avoiding the evaluation of a great amount of states and still obtaining the exact median. We present a set of experiments comparing our new algorithm against the previous existing exact algorithm using synthetic data. In addition, we present the first application of the exact median graph computation to real data and we compare the results against an approximate algorithm based on genetic search. These experimental results show that our algorithm outperforms the previous existing exact algorithm and in addition show the potential applicability of the exact solutions to real problems.
|
|
|
George Tom, Minesh Mathew, Sergi Garcia Bordils, Dimosthenis Karatzas and CV Jawahar. 2023. ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition. 17th International Conference on Document Analysis and Recognition.577–586. (LNCS.)
Abstract: In this report, we present the final results of the ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition. The RoadText challenge is based on the RoadText-1K dataset and aims to assess and enhance current methods for scene text detection, recognition, and tracking in videos. The RoadText-1K dataset contains 1000 dash cam videos with annotations for text bounding boxes and transcriptions in every frame. The competition features an end-to-end task, requiring systems to accurately detect, track, and recognize text in dash cam videos. The paper presents a comprehensive review of the submitted methods along with a detailed analysis of the results obtained by the methods. The analysis provides valuable insights into the current capabilities and limitations of video text detection, tracking, and recognition systems for dashcam videos.
|
|
|
R. Bertrand, Oriol Ramos Terrades, P. Gomez-Kramer, P. Franco and Jean-Marc Ogier. 2015. A Conditional Random Field model for font forgery detection. 13th International Conference on Document Analysis and Recognition ICDAR2015.576–580.
Abstract: Nowadays, document forgery is becoming a real issue. A large amount of documents that contain critical information as payment slips, invoices or contracts, are constantly subject to fraudster manipulation because of the lack of security regarding this kind of document. Previously, a system to detect fraudulent documents based on its intrinsic features has been presented. It was especially designed to retrieve copy-move forgery and imperfection due to fraudster manipulation. However, when a set of characters is not present in the original document, copy-move forgery is not feasible. Hence, the fraudster will use a text toolbox to add or modify information in the document by imitating the font or he will cut and paste characters from another document where the font properties are similar. This often results in font type errors. Thus, a clue to detect document forgery consists of finding characters, words or sentences in a document with font properties different from their surroundings. To this end, we present in this paper an automatic forgery detection method based on document font features. Using the Conditional Random Field a measurement of probability that a character belongs to a specific font is made by comparing the character font features to a knowledge database. Then, the character is classified as a genuine or a fake one by comparing its probability to belong to a certain font type with those of the neighboring characters.
|
|
|
Sounak Dey, Anguelos Nicolaou, Josep Llados and Umapada Pal. 2016. Local Binary Pattern for Word Spotting in Handwritten Historical Document. Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR).574–583. (LNCS.)
Abstract: Digital libraries store images which can be highly degraded and to index this kind of images we resort to word spotting as our information retrieval system. Information retrieval for handwritten document images is more challenging due to the difficulties in complex layout analysis, large variations of writing styles, and degradation or low quality of historical manuscripts. This paper presents a simple innovative learning-free method for word spotting from large scale historical documents combining Local Binary Pattern (LBP) and spatial sampling. This method offers three advantages: firstly, it operates in completely learning free paradigm which is very different from unsupervised learning methods, secondly, the computational time is significantly low because of the LBP features, which are very fast to compute, and thirdly, the method can be used in scenarios where annotations are not available. Finally, we compare the results of our proposed retrieval method with other methods in the literature and we obtain the best results in the learning free paradigm.
Keywords: Local binary patterns; Spatial sampling; Learning-free; Word spotting; Handwritten; Historical document analysis; Large-scale data
|
|
|
L.Tarazon and 6 others. 2009. Confidence Measures for Error Correction in Interactive Transcription of Handwritten Text. 15th International Conference on Image Analysis and Processing. Springer Berlin Heidelberg, 567–574. (LNCS.)
Abstract: An effective approach to transcribe old text documents is to follow an interactive-predictive paradigm in which both, the system is guided by the human supervisor, and the supervisor is assisted by the system to complete the transcription task as efficiently as possible. In this paper, we focus on a particular system prototype called GIDOC, which can be seen as a first attempt to provide user-friendly, integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. More specifically, we focus on the handwriting recognition part of GIDOC, for which we propose the use of confidence measures to guide the human supervisor in locating possible system errors and deciding how to proceed. Empirical results are reported on two datasets showing that a word error rate not larger than a 10% can be achieved by only checking the 32% of words that are recognised with less confidence.
|
|
|
Antonio Clavelli, Dimosthenis Karatzas, Josep Llados, Mario Ferraro and Giuseppe Boccignone. 2014. Modelling task-dependent eye guidance to objects in pictures. CoCom, 6(3), 558–584.
Abstract: 5Y Impact Factor: 1.14 / 3rd (Computer Science, Artificial Intelligence)
We introduce a model of attentional eye guidance based on the rationale that the deployment of gaze is to be considered in the context of a general action-perception loop relying on two strictly intertwined processes: sensory processing, depending on current gaze position, identifies sources of information that are most valuable under the given task; motor processing links such information with the oculomotor act by sampling the next gaze position and thus performing the gaze shift. In such a framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the payoff of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects. The different levels of the action-perception loop are represented in probabilistic form and eventually give rise to a stochastic process that generates the gaze sequence. This way the model also accounts for statistical properties of gaze shifts such as individual scan path variability. Results of the simulations are compared either with experimental data derived from publicly available datasets and from our own experiments.
Keywords: Visual attention; Gaze guidance; Value; Payoff; Stochastic fixation prediction
|
|
|
Sanket Biswas, Pau Riba, Josep Llados and Umapada Pal. 2021. DocSynth: A Layout Guided Approach for Controllable Document Image Synthesis. 16th International Conference on Document Analysis and Recognition.555–568. (LNCS.)
Abstract: Despite significant progress on current state-of-the-art image generation models, synthesis of document images containing multiple and complex object layouts is a challenging task. This paper presents a novel approach, called DocSynth, to automatically synthesize document images based on a given layout. In this work, given a spatial layout (bounding boxes with object categories) as a reference by the user, our proposed DocSynth model learns to generate a set of realistic document images consistent with the defined layout. Also, this framework has been adapted to this work as a superior baseline model for creating synthetic document image datasets for augmenting real data during training for document layout analysis tasks. Different sets of learning objectives have been also used to improve the model performance. Quantitatively, we also compare the generated results of our model with real data using standard evaluation metrics. The results highlight that our model can successfully generate realistic and diverse document images with multiple objects. We also present a comprehensive qualitative analysis summary of the different scopes of synthetic image generation tasks. Lastly, to our knowledge this is the first work of its kind.
|
|
|
S. Chanda, Oriol Ramos Terrades and Umapada Pal. 2007. SVM Based Scheme for Thai and English Script Identification. 9th International Conference on Document Analysis and Recognition.551–555.
|
|
|
Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Llados and Thierry Brouard. 2013. Fuzzy Multilevel Graph Embedding. PR, 46(2), 551–565.
Abstract: Structural pattern recognition approaches offer the most expressive, convenient, powerful but computational expensive representations of underlying relational information. To benefit from mature, less expensive and efficient state-of-the-art machine learning models of statistical pattern recognition they must be mapped to a low-dimensional vector space. Our method of explicit graph embedding bridges the gap between structural and statistical pattern recognition. We extract the topological, structural and attribute information from a graph and encode numeric details by fuzzy histograms and symbolic details by crisp histograms. The histograms are concatenated to achieve a simple and straightforward embedding of graph into a low-dimensional numeric feature vector. Experimentation on standard public graph datasets shows that our method outperforms the state-of-the-art methods of graph embedding for richly attributed graphs.
Keywords: Pattern recognition; Graphics recognition; Graph clustering; Graph classification; Explicit graph embedding; Fuzzy logic
|
|