|
Alicia Fornes, Josep Llados, Joan Mas, Joana Maria Pujadas-Mora and Anna Cabre. 2014. A Bimodal Crowdsourcing Platform for Demographic Historical Manuscripts. Digital Access to Textual Cultural Heritage Conference.103–108.
Abstract: In this paper we present a crowdsourcing web-based application for extracting information from demographic handwritten document images. The proposed application integrates two points of view: the semantic information for demographic research, and the ground-truthing for document analysis research. Concretely, the application has the contents view, where the information is recorded into forms, and the labeling view, with the word labels for evaluating document analysis techniques. The crowdsourcing architecture allows to accelerate the information extraction (many users can work simultaneously), validate the information, and easily provide feedback to the users. We finally show how the proposed application can be extended to other kind of demographic historical manuscripts.
|
|
|
Alicia Fornes, Josep Llados and Joana Maria Pujadas-Mora. 2020. Browsing of the Social Network of the Past: Information Extraction from Population Manuscript Images. Handwritten Historical Document Analysis, Recognition, and Retrieval – State of the Art and Future Trends. World Scientific.
|
|
|
Alicia Fornes, Josep Llados, Oriol Ramos Terrades and Marçal Rusiñol. 2016. La Visió per Computador com a Eina per a la Interpretació Automàtica de Fonts Documentals.
|
|
|
Alicia Fornes, Sergio Escalera, Josep Llados and Ernest Valveny. 2010. Symbol Classification using Dynamic Aligned Shape Descriptor. 20th International Conference on Pattern Recognition.1957–1960.
Abstract: Shape representation is a difficult task because of several symbol distortions, such as occlusions, elastic deformations, gaps or noise. In this paper, we propose a new descriptor and distance computation for coping with the problem of symbol recognition in the domain of Graphical Document Image Analysis. The proposed D-Shape descriptor encodes the arrangement information of object parts in a circular structure, allowing different levels of distortion. The classification is performed using a cyclic Dynamic Time Warping based method, allowing distortions and rotation. The methodology has been validated on different data sets, showing very high recognition rates.
|
|
|
Alicia Fornes, Sergio Escalera, Josep Llados and Gemma Sanchez. 2007. Symbol Recognition by Multi-class Blurred Shape Models. Seventh IAPR International Workshop on Graphics Recognition.11–13.
|
|
|
Alicia Fornes, Sergio Escalera, Josep Llados, Gemma Sanchez and Joan Mas. 2008. Hand Drawn Symbol Recognition by Blurred Shape Model Descriptor and a Multiclass Classifier. In W. Liu, J.L., J.M. Ogier, ed. Graphics Recognition: Recent Advances and New Opportunities.30–40. (LNCS.)
|
|
|
Alicia Fornes, Sergio Escalera, Josep Llados, Gemma Sanchez, Petia Radeva and Oriol Pujol. 2007. Handwritten Symbol Recognition by a Boosted Blurred Shape Model with Error Correction. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4477:13–21.
|
|
|
Alicia Fornes, V.C.Kieu, M. Visani, N.Journet and Anjan Dutta. 2014. The ICDAR/GREC 2013 Music Scores Competition: Staff Removal. In B.Lamiroy and J.-M. Ogier, eds. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 207–220. (LNCS.)
Abstract: The first competition on music scores that was organized at ICDAR and GREC in 2011 awoke the interest of researchers, who participated in both staff removal and writer identification tasks. In this second edition, we focus on the staff removal task and simulate a real case scenario concerning old and degraded music scores. For this purpose, we have generated a new set of semi-synthetic images using two degradation models that we previously introduced: local noise and 3D distortions. In this extended paper we provide an extended description of the dataset, degradation models, evaluation metrics, the participant’s methods and the obtained results that could not be presented at ICDAR and GREC proceedings due to page limitations.
Keywords: Competition; Graphics recognition; Music scores; Writer identification; Staff removal
|
|
|
Alicia Fornes and 6 others. 2017. ICDAR2017 Competition on Information Extraction in Historical Handwritten Records. 14th International Conference on Document Analysis and Recognition.1389–1394.
Abstract: The extraction of relevant information from historical handwritten document collections is one of the key steps in order to make these manuscripts available for access and searches. In this competition, the goal is to detect the named entities and assign each of them a semantic category, and therefore, to simulate the filling in of a knowledge database. This paper describes the dataset, the tasks, the evaluation metrics, the participants methods and the results.
|
|
|
Alicia Fornes, Volkmar Frinken, Andreas Fischer, Jon Almazan, G. Jackson and Horst Bunke. 2011. A Keyword Spotting Approach Using Blurred Shape Model-Based Descriptors. Proceedings of the 2011 Workshop on Historical Document Imaging and Processing. ACM, 83–90.
Abstract: The automatic processing of handwritten historical documents is considered a hard problem in pattern recognition. In addition to the challenges given by modern handwritten data, a lack of training data as well as effects caused by the degradation of documents can be observed. In this scenario, keyword spotting arises to be a viable solution to make documents amenable for searching and browsing. For this task we propose the adaptation of shape descriptors used in symbol recognition. By treating each word image as a shape, it can be represented using the Blurred Shape Model and the De-formable Blurred Shape Model. Experiments on the George Washington database demonstrate that this approach is able to outperform the commonly used Dynamic Time Warping approach.
|
|