|
Mathieu Nicolas Delalandre, Jean-Yves Ramel, Ernest Valveny and Muhammad Muzzamil Luqman. 2010. A Performance Characterization Algorithm for Symbol Localization. Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers. Springer Berlin Heidelberg, 260–271. (LNCS.)
Abstract: In this paper we present an algorithm for performance characterization of symbol localization systems. This algorithm is aimed to be a more “reliable” and “open” solution to characterize the performance. To achieve that, it exploits only single points as the result of localization and offers the possibility to reconsider the localization results provided by a system. We use the information about context in groundtruth, and overall localization results, to detect the ambiguous localization results. A probability score is computed for each matching between a localization point and a groundtruth region, depending on the spatial distribution of the other regions in the groundtruth. Final characterization is given with detection rate/probability score plots, describing the sets of possible interpretations of the localization results, according to a given confidence rate. We present experimentation details along with the results for the symbol localization system of [1], exploiting a synthetic dataset of architectural floorplans and electrical diagrams (composed of 200 images and 3861 symbols).
|
|
|
Mathieu Nicolas Delalandre, Tony Pridmore, Ernest Valveny, Eric Trupin and Herve Locteau. 2007. Building Synthetic Graphical Documents for Performance Evaluation. Seventh IAPR International Workshop on Graphics Recognition.84–87.
|
|
|
Mathieu Nicolas Delalandre, Tony Pridmore, Ernest Valveny, Herve Locteau and Eric Trupin. 2008. Building Synthetic Graphical Documents for Performance Evaluation. In W. Liu, J.L., J.M. Ogier, ed. Graphics Recognition: Recent Advances and New Opportunities.288–298. (LNCS.)
|
|
|
Mickael Coustaty and Alicia Fornes. 2023. Document Analysis and Recognition – ICDAR 2023 Workshops. (LNCS.)
|
|
|
Minesh Mathew, Dimosthenis Karatzas and C.V. Jawahar. 2021. DocVQA: A Dataset for VQA on Document Images. IEEE Winter Conference on Applications of Computer Vision.2200–2209.
Abstract: We present a new dataset for Visual Question Answering (VQA) on document images called DocVQA. The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension is presented. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial. The dataset, code and leaderboard are available at docvqa. org
|
|
|
Minesh Mathew, Lluis Gomez, Dimosthenis Karatzas and C.V. Jawahar. 2021. Asking questions on handwritten document collections. IJDAR, 24, 235–249.
Abstract: This work addresses the problem of Question Answering (QA) on handwritten document collections. Unlike typical QA and Visual Question Answering (VQA) formulations where the answer is a short text, we aim to locate a document snippet where the answer lies. The proposed approach works without recognizing the text in the documents. We argue that the recognition-free approach is suitable for handwritten documents and historical collections where robust text recognition is often difficult. At the same time, for human users, document image snippets containing answers act as a valid alternative to textual answers. The proposed approach uses an off-the-shelf deep embedding network which can project both textual words and word images into a common sub-space. This embedding bridges the textual and visual domains and helps us retrieve document snippets that potentially answer a question. We evaluate results of the proposed approach on two new datasets: (i) HW-SQuAD: a synthetic, handwritten document image counterpart of SQuAD1.0 dataset and (ii) BenthamQA: a smaller set of QA pairs defined on documents from the popular Bentham manuscripts collection. We also present a thorough analysis of the proposed recognition-free approach compared to a recognition-based approach which uses text recognized from the images using an OCR. Datasets presented in this work are available to download at docvqa.org.
|
|
|
Minesh Mathew, Ruben Tito, Dimosthenis Karatzas, R.Manmatha and C.V. Jawahar. 2020. Document Visual Question Answering Challenge 2020. 33rd IEEE Conference on Computer Vision and Pattern Recognition – Short paper.
Abstract: This paper presents results of Document Visual Question Answering Challenge organized as part of “Text and Documents in the Deep Learning Era” workshop, in CVPR 2020. The challenge introduces a new problem – Visual Question Answering on document images. The challenge comprised two tasks. The first task concerns with asking questions on a single document image. On the other hand, the second task is set as a retrieval task where the question is posed over a collection of images. For the task 1 a new dataset is introduced comprising 50,000 questions-answer(s) pairs defined over 12,767 document images. For task 2 another dataset has been created comprising 20 questions over 14,362 document images which share the same document template.
|
|
|
Minesh Mathew, Viraj Bagal, Ruben Tito, Dimosthenis Karatzas, Ernest Valveny and C.V. Jawahar. 2022. InfographicVQA. Winter Conference on Applications of Computer Vision.1697–1706.
Abstract: Infographics communicate information using a combination of textual, graphical and visual elements. This work explores the automatic understanding of infographic images by using a Visual Question Answering technique. To this end, we present InfographicVQA, a new dataset comprising a diverse collection of infographics and question-answer annotations. The questions require methods that jointly reason over the document layout, textual content, graphical elements, and data visualizations. We curate the dataset with an emphasis on questions that require elementary reasoning and basic arithmetic skills. For VQA on the dataset, we evaluate two Transformer-based strong baselines. Both the baselines yield unsatisfactory results compared to near perfect human performance on the dataset. The results suggest that VQA on infographics--images that are designed to communicate information quickly and clearly to human brain--is ideal for benchmarking machine understanding of complex document images. The dataset is available for download at docvqa. org
Keywords: Document Analysis Datasets; Evaluation and Comparison of Vision Algorithms; Vision and Languages
|
|
|
Miquel Ferrer, Dimosthenis Karatzas, Ernest Valveny and Horst Bunke. 2009. A Recursive Embedding Approach to Median Graph Computation. 7th IAPR – TC–15 Workshop on Graph–Based Representations in Pattern Recognition. Springer Berlin Heidelberg, 113–123. (LNCS.)
Abstract: The median graph has been shown to be a good choice to infer a representative of a set of graphs. It has been successfully applied to graph-based classification and clustering. Nevertheless, its computation is extremely complex. Several approaches have been presented up to now based on different strategies. In this paper we present a new approximate recursive algorithm for median graph computation based on graph embedding into vector spaces. Preliminary experiments on three databases show that this new approach is able to obtain better medians than the previous existing approaches.
|
|
|
Miquel Ferrer, Dimosthenis Karatzas, Ernest Valveny, I. Bardaji and Horst Bunke. 2011. A Generic Framework for Median Graph Computation based on a Recursive Embedding Approach. CVIU, 115(7), 919–928.
Abstract: The median graph has been shown to be a good choice to obtain a represen- tative of a set of graphs. However, its computation is a complex problem. Recently, graph embedding into vector spaces has been proposed to obtain approximations of the median graph. The problem with such an approach is how to go from a point in the vector space back to a graph in the graph space. The main contribution of this paper is the generalization of this previ- ous method, proposing a generic recursive procedure that permits to recover the graph corresponding to a point in the vector space, introducing only the amount of approximation inherent to the use of graph matching algorithms. In order to evaluate the proposed method, we compare it with the set me- dian and with the other state-of-the-art embedding-based methods for the median graph computation. The experiments are carried out using four dif- ferent databases (one semi-artificial and three containing real-world data). Results show that with the proposed approach we can obtain better medi- ans, in terms of the sum of distances to the training graphs, than with the previous existing methods.
Keywords: Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
|
|