|
Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas, Josep Llados, R.Jain and D.Doermann. 2015. Novel Line Verification for Multiple Instance Focused Retrieval in Document Collections. 13th International Conference on Document Analysis and Recognition ICDAR2015.481–485.
|
|
|
Hongxing Gao and 6 others. 2013. Key-region detection for document images -applications to administrative document retrieval. 12th International Conference on Document Analysis and Recognition.230–234.
Abstract: In this paper we argue that a key-region detector designed to take into account the special characteristics of document images can result in the detection of less and more meaningful key-regions. We propose a fast key-region detector able to capture aspects of the structural information of the document, and demonstrate its efficiency by comparing against standard detectors in an administrative document retrieval scenario. We show that using the proposed detector results to a smaller number of detected key-regions and higher performance without any drop in speed compared to standard state of the art detectors.
|
|
|
Ilke Demir, Dena Bazazian, Adriana Romero, Viktoriia Sharmanska and Lyne P. Tchapmi. 2018. WiCV 2018: The Fourth Women In Computer Vision Workshop. 4th Women in Computer Vision Workshop.1941–19412.
Abstract: We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations.
Keywords: Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning
|
|
|
J. Chazalon, Marçal Rusiñol and Jean-Marc Ogier. 2015. Improving Document Matching Performance by Local Descriptor Filtering. 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015.1216–1220.
Abstract: In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework. In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25 000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using
ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements.
|
|
|
J. Chazalon, Marçal Rusiñol, Jean-Marc Ogier and Josep Llados. 2015. A Semi-Automatic Groundtruthing Tool for Mobile-Captured Document Segmentation. 13th International Conference on Document Analysis and Recognition ICDAR2015.621–625.
Abstract: This paper presents a novel way to generate groundtruth data for the evaluation of mobile document capture systems, focusing on the first stage of the image processing pipeline involved: document object detection and segmentation in lowquality preview frames. We introduce and describe a simple, robust and fast technique based on color markers which enables a semi-automated annotation of page corners. We also detail a technique for marker removal. Methods and tools presented in the paper were successfully used to annotate, in few hours, 24889
frames in 150 video files for the smartDOC competition at ICDAR 2015
|
|
|
J. Chazalon and 9 others. 2017. SmartDoc 2017 Video Capture: Mobile Document Acquisition in Video Mode. 1st International Workshop on Open Services and Tools for Document Analysis.
Abstract: As mobile document acquisition using smartphones is getting more and more common, along with the continuous improvement of mobile devices (both in terms of computing power and image quality), we can wonder to which extent mobile phones can replace desktop scanners. Modern applications can cope with perspective distortion and normalize the contrast of a document page captured with a smartphone, and in some cases like bottle labels or posters, smartphones even have the advantage of allowing the acquisition of non-flat or large documents. However, several cases remain hard to handle, such as reflective documents (identity cards, badges, glossy magazine cover, etc.) or large documents for which some regions require an important amount of detail. This paper introduces the SmartDoc 2017 benchmark (named “SmartDoc Video Capture”), which aims at
assessing whether capturing documents using the video mode of a smartphone could solve those issues. The task under evaluation is both a stitching and a reconstruction problem, as the user can move the device over different parts of the document to capture details or try to erase highlights. The material released consists of a dataset, an evaluation method and the associated tool, a sample method, and the tools required to extend the dataset. All the components are released publicly under very permissive licenses, and we particularly cared about maximizing the ease of
understanding, usage and improvement.
|
|
|
J.Kuhn and 10 others. 2015. Advancing Physics Learning Through Traversing a Multi-Modal Experimentation Space. Workshop Proceedings on the 11th International Conference on Intelligent Environments.373–380.
Abstract: Translating conceptual knowledge into real world experiences presents a significant educational challenge. This position paper presents an approach that supports learners in moving seamlessly between conceptual learning and their application in the real world by bringing physical and virtual experiments into everyday settings. Learners are empowered in conducting these situated experiments in a variety of physical settings by leveraging state of the art mobile, augmented reality, and virtual reality technology. A blend of mobile-based multi-sensory physical experiments, augmented reality and enabling virtual environments can allow learners to bridge their conceptual learning with tangible experiences in a completely novel manner. This approach focuses on the learner by applying self-regulated personalised learning techniques, underpinned by innovative pedagogical approaches and adaptation techniques, to ensure that the needs and preferences of each learner are catered for individually.
|
|
|
Jaime Lopez-Krahe, Josep Llados and Enric Marti. 2000. Architectural Floor Plan Analysis. University of Edinburgh.
|
|
|
Jaume Gibert. 2012. Vector Space Embedding of Graphs via Statistics of Labelling Information. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyse patterns.
Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding.
In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
|
|
|
Jaume Gibert. 2009. Learning structural representations and graph matching paradigms in the context of object recognition. (Master's thesis, .)
|
|