|
A. Pujol and 6 others. 1999. Real time pharmaceutical product recognition using color and shape indexing. Proceedings of the 2nd International Workshop on European Scientific and Industrial Collaboration (WESIC´99), Promotoring Advanced Technologies in Manufacturing..
|
|
|
A.Kesidis and Dimosthenis Karatzas. 2014. Logo and Trademark Recognition. In D. Doermann and K. Tombre, eds. Handbook of Document Image Processing and Recognition. Springer London, 591–646.
Abstract: The importance of logos and trademarks in nowadays society is indisputable, variably seen under a positive light as a valuable service for consumers or a negative one as a catalyst of ever-increasing consumerism. This chapter discusses the technical approaches for enabling machines to work with logos, looking into the latest methodologies for logo detection, localization, representation, recognition, retrieval, and spotting in a variety of media. This analysis is presented in the context of three different applications covering the complete depth and breadth of state of the art techniques. These are trademark retrieval systems, logo recognition in document images, and logo detection and removal in images and videos. This chapter, due to the very nature of logos and trademarks, brings together various facets of document image analysis spanning graphical and textual content, while it links document image analysis to other computer vision domains, especially when it comes to the analysis of real-scene videos and images.
Keywords: Logo recognition; Logo removal; Logo spotting; Trademark registration; Trademark retrieval systems
|
|
|
A.Nicolaou, Andrew Bagdanov, Marcus Liwicki and Dimosthenis Karatzas. 2015. Sparse Radial Sampling LBP for Writer Identification. 13th International Conference on Document Analysis and Recognition ICDAR2015.716–720.
Abstract: In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.
|
|
|
Adria Molina, Lluis Gomez, Oriol Ramos Terrades and Josep Llados. 2022. A Generic Image Retrieval Method for Date Estimation of Historical Document Collections. Document Analysis Systems.15th IAPR International Workshop, (DAS2022).583–597.
Abstract: Date estimation of historical document images is a challenging problem, with several contributions in the literature that lack of the ability to generalize from one dataset to others. This paper presents a robust date estimation system based in a retrieval approach that generalizes well in front of heterogeneous collections. We use a ranking loss function named smooth-nDCG to train a Convolutional Neural Network that learns an ordination of documents for each problem. One of the main usages of the presented approach is as a tool for historical contextual retrieval. It means that scholars could perform comparative analysis of historical images from big datasets in terms of the period where they were produced. We provide experimental evaluation on different types of documents from real datasets of manuscript and newspaper images.
Keywords: Date estimation; Document retrieval; Image retrieval; Ranking loss; Smooth-nDCG
|
|
|
Adria Molina, Pau Riba, Lluis Gomez, Oriol Ramos Terrades and Josep Llados. 2021. Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach. 16th International Conference on Document Analysis and Recognition.306–320. (LNCS.)
Abstract: This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods.
|
|
|
Adria Rico and Alicia Fornes. 2017. Camera-based Optical Music Recognition using a Convolutional Neural Network. 12th IAPR International Workshop on Graphics Recognition.27–28.
Abstract: Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results
Keywords: optical music recognition; document analysis; convolutional neural network; deep learning
|
|
|
Agata Lapedriza, Jaume Garcia, Ernest Valveny, Robert Benavente, Miquel Ferrer and Gemma Sanchez. 2008. Una experiencia de aprenentatge basada en projectes en el ambit de la informatica.
|
|
|
Agnes Borras. 2009. Contributions to the Content-Based Image Retrieval Using Pictorial Queries. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: The broad access to digital cameras, personal computers and Internet, has lead to the generation of large volumes of data in digital form. If we want an effective usage of this huge amount of data, we need automatic tools to allow the retrieval of relevant information. Image data is a particular type of information that requires specific techniques of description and indexing. The computer vision field that studies these kind of techniques is called Content-Based Image Retrieval (CBIR). Instead of using text-based descriptions, a system of CBIR deals on properties that are inherent in the images themselves. Hence, the feature-based description provides a universal via of image expression in contrast with the more than 6000 languages spoken in the world.
Nowadays, the CBIR is a dynamic focus of research that has derived in important applications for many professional groups. The potential fields of application can be such diverse as: the medical domain, the crime prevention, the protection of the intel- lectual property, the journalism, the graphic design, the web search, the preservation of cultural heritage, etc.
The definition on the role of the user is a key point in the development of a CBIR application. The user is in charge to formulate the queries from which the images are retrieved. We have centered our attention on the image retrieval techniques that use queries based on pictorial information. We have identified a taxonomy composed by four main query paradigms: query-by-selection, query-by-iconic-composition, query- by-sketch and query-by-paint. Each one of these paradigms allows a different degree of user expressivity. From a simple image selection, to a complete painting of the query, the user takes control of the input in the CBIR system.
Along the chapters of this thesis we have analyzed the influence that each query paradigm imposes in the internal operations of a CBIR system. Moreover, we have proposed a set of contributions that we have exemplified in the context of a final application.
|
|
|
Agnes Borras, Francesc Tous, Josep Llados and Maria Vanrell. 2003. High-Level Clothes Description Based on Color-Texture and Structural Features. Lecture Notes in Computer Science.108–116.
Abstract: This work is a part of a surveillance system where content- based image retrieval is done in terms of people appearance. Given an image of a person, our work provides an automatic description of his clothing according to the colour, texture and structural composition of its garments. We present a two-stage process composed by image segmentation and a region-based interpretation. We segment an image by modelling it due to an attributed graph and applying a hybrid method that follows a split-and-merge strategy. We propose the interpretation of five cloth combinations that are modelled in a graph structure in terms of region features. The interpretation is viewed as a graph matching with an associated cost between the segmentation and the cloth models. Fi- nally, we have tested the process with a ground-truth of one hundred images.
|
|
|
Agnes Borras, Francesc Tous, Josep Llados and Maria Vanrell. 2003. High-Level Clothes Description Based on Colour-Texture and Structural Features. 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003.
|
|