|
Mohammed Al Rawi and Dimosthenis Karatzas. 2018. On the Labeling Correctness in Computer Vision Datasets. Proceedings of the Workshop on Interactive Adaptive Learning, co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.
Abstract: Image datasets have heavily been used to build computer vision systems.
These datasets are either manually or automatically labeled, which is a
problem as both labeling methods are prone to errors. To investigate this problem, we use a majority voting ensemble that combines the results from several Convolutional Neural Networks (CNNs). Majority voting ensembles not only enhance the overall performance, but can also be used to estimate the confidence level of each sample. We also examined Softmax as another form to estimate posterior probability. We have designed various experiments with a range of different ensembles built from one or different, or temporal/snapshot CNNs, which have been trained multiple times stochastically. We analyzed CIFAR10, CIFAR100, EMNIST, and SVHN datasets and we found quite a few incorrect
labels, both in the training and testing sets. We also present detailed confidence analysis on these datasets and we found that the ensemble is better than the Softmax when used estimate the per-sample confidence. This work thus proposes an approach that can be used to scrutinize and verify the labeling of computer vision datasets, which can later be applied to weakly/semi-supervised learning. We propose a measure, based on the Odds-Ratio, to quantify how many of these incorrectly classified labels are actually incorrectly labeled and how many of these are confusing. The proposed methods are easily scalable to larger datasets, like ImageNet, LSUN and SUN, as each CNN instance is trained for 60 epochs; or even faster, by implementing a temporal (snapshot) ensemble.
|
|
|
Mohamed Ali Souibgui, Y.Kessentini and Alicia Fornes. 2020. A conditional GAN based approach for distorted camera captured documents recovery. 4th Mediterranean Conference on Pattern Recognition and Artificial Intelligence.
|
|
|
Mohamed Ali Souibgui and Y.Kessentini. 2022. DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement. TPAMI, 44(3), 1180–1191.
Abstract: Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems.
|
|
|
Mohamed Ali Souibgui and 6 others. 2022. DocEnTr: An End-to-End Document Image Enhancement Transformer. 26th International Conference on Pattern Recognition.1699–1705.
Abstract: Document images can be affected by many degradation scenarios, which cause recognition and processing difficulties. In this age of digitization, it is important to denoise them for proper usage. To address this challenge, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion. The encoder operates directly on the pixel patches with their positional information without the use of any convolutional layers, while the decoder reconstructs a clean image from the encoded patches. Conducted experiments show a superiority of the proposed model compared to the state-of the-art methods on several DIBCO benchmarks. Code and models will be publicly available at: https://github.com/dali92002/DocEnTR
Keywords: Degradation; Head; Optical character recognition; Self-supervised learning; Benchmark testing; Transformers; Magnetic heads
|
|
|
Mohamed Ali Souibgui and 8 others. 2023. Text-DIAE: a self-supervised degradation invariant autoencoder for text recognition and document enhancement. Proceedings of the 37th AAAI Conference on Artificial Intelligence.
Abstract: In this paper, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE), a self-supervised model designed to tackle two tasks, text recognition (handwritten or scene-text) and document image enhancement. We start by employing a transformer-based architecture that incorporates three pretext tasks as learning objectives to be optimized during pre-training without the usage of labelled data. Each of the pretext objectives is specifically tailored for the final downstream tasks. We conduct several ablation experiments that confirm the design choice of the selected pretext tasks. Importantly, the proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time requiring substantially fewer data samples to converge. Finally, we demonstrate that our method surpasses the state-of-the-art in existing supervised and self-supervised settings in handwritten and scene text recognition and document image enhancement. Our code and trained models will be made publicly available at https://github.com/dali92002/SSL-OCR
Keywords: Representation Learning for Vision; CV Applications; CV Language and Vision; ML Unsupervised; Self-Supervised Learning
|
|
|
Mohamed Ali Souibgui, Pau Torras, Jialuo Chen and Alicia Fornes. 2023. An Evaluation of Handwritten Text Recognition Methods for Historical Ciphered Manuscripts. 7th International Workshop on Historical Document Imaging and Processing.7–12.
Abstract: This paper investigates the effectiveness of different deep learning HTR families, including LSTM, Seq2Seq, and transformer-based approaches with self-supervised pretraining, in recognizing ciphered manuscripts from different historical periods and cultures. The goal is to identify the most suitable method or training techniques for recognizing ciphered manuscripts and to provide insights into the challenges and opportunities in this field of research. We evaluate the performance of these models on several datasets of ciphered manuscripts and discuss their results. This study contributes to the development of more accurate and efficient methods for recognizing historical manuscripts for the preservation and dissemination of our cultural heritage.
|
|
|
Mohamed Ali Souibgui, Asma Bensalah, Jialuo Chen, Alicia Fornes and Michelle Waldispühl. 2023. A User Perspective on HTR methods for the Automatic Transcription of Rare Scripts: The Case of Codex Runicus Just Accepted. JOCCH, 15(4), 1–18.
Abstract: Recent breakthroughs in Artificial Intelligence, Deep Learning and Document Image Analysis and Recognition have significantly eased the creation of digital libraries and the transcription of historical documents. However, for documents in rare scripts with few labelled training data available, current Handwritten Text Recognition (HTR) systems are too constraint. Moreover, research on HTR often focuses on technical aspects only, and rarely puts emphasis on implementing software tools for scholars in Humanities. In this article, we describe, compare and analyse different transcription methods for rare scripts. We evaluate their performance in a real use case of a medieval manuscript written in the runic script (Codex Runicus) and discuss advantages and disadvantages of each method from the user perspective. From this exhaustive analysis and comparison with a fully manual transcription, we raise conclusions and provide recommendations to scholars interested in using automatic transcription tools.
|
|
|
Mohamed Ali Souibgui, Alicia Fornes, Yousri Kessentini and Beata Megyesi. 2022. Few shots are all you need: A progressive learning approach for low resource handwritten text recognition. PRL, 160, 43–49.
Abstract: Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. In this paper, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols. The method consists of detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from an alphabet, which could differ from the alphabet of the target domain. A second training step is then applied to reduce the gap between the source and the target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the unlabeled data. The evaluation on different datasets shows that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in the following repository: https://github.com/dali92002/HTRbyMatching
|
|
|
Mohamed Ali Souibgui, Alicia Fornes, Y.Kessentini and C.Tudor. 2021. A Few-shot Learning Approach for Historical Encoded Manuscript Recognition. 25th International Conference on Pattern Recognition.5413–5420.
Abstract: Encoded (or ciphered) manuscripts are a special type of historical documents that contain encrypted text. The automatic recognition of this kind of documents is challenging because: 1) the cipher alphabet changes from one document to another, 2) there is a lack of annotated corpus for training and 3) touching symbols make the symbol segmentation difficult and complex. To overcome these difficulties, we propose a novel method for handwritten ciphers recognition based on few-shot object detection. Our method first detects all symbols of a given alphabet in a line image, and then a decoding step maps the symbol similarity scores to the final sequence of transcribed symbols. By training on synthetic data, we show that the proposed architecture is able to recognize handwritten ciphers with unseen alphabets. In addition, if few labeled pages with the same alphabet are used for fine tuning, our method surpasses existing unsupervised and supervised HTR methods for ciphers recognition.
|
|
|
Mohamed Ali Souibgui and 7 others. 2022. One-shot Compositional Data Generation for Low Resource Handwritten Text Recognition. Winter Conference on Applications of Computer Vision.
Abstract: Low resource Handwritten Text Recognition (HTR) is a hard problem due to the scarce annotated data and the very limited linguistic information (dictionaries and language models). This appears, for example, in the case of historical ciphered manuscripts, which are usually written with invented alphabets to hide the content. Thus, in this paper we address this problem through a data generation technique based on Bayesian Program Learning (BPL). Contrary to traditional generation approaches, which require a huge amount of annotated images, our method is able to generate human-like handwriting using only one sample of each symbol from the desired alphabet. After generating symbols, we create synthetic lines to train state-of-the-art HTR architectures in a segmentation free fashion. Quantitative and qualitative analyses were carried out and confirm the effectiveness of the proposed method, achieving competitive results compared to the usage of real annotated data.
Keywords: Document Analysis
|
|