2018 |
|
Sangheeta Roy, Palaiahnakote Shivakumara, Namita Jain, Vijeta Khare, Anjan Dutta, Umapada Pal, et al. (2018). Rough-Fuzzy based Scene Categorization for Text Detection and Recognition in Video. PR - Pattern Recognition, 80, 64–82.
Abstract: Scene image or video understanding is a challenging task especially when number of video types increases drastically with high variations in background and foreground. This paper proposes a new method for categorizing scene videos into different classes, namely, Animation, Outlet, Sports, e-Learning, Medical, Weather, Defense, Economics, Animal Planet and Technology, for the performance improvement of text detection and recognition, which is an effective approach for scene image or video understanding. For this purpose, at first, we present a new combination of rough and fuzzy concept to study irregular shapes of edge components in input scene videos, which helps to classify edge components into several groups. Next, the proposed method explores gradient direction information of each pixel in each edge component group to extract stroke based features by dividing each group into several intra and inter planes. We further extract correlation and covariance features to encode semantic features located inside planes or between planes. Features of intra and inter planes of groups are then concatenated to get a feature matrix. Finally, the feature matrix is verified with temporal frames and fed to a neural network for categorization. Experimental results show that the proposed method outperforms the existing state-of-the-art methods, at the same time, the performances of text detection and recognition methods are also improved significantly due to categorization.
Keywords: Rough set; Fuzzy set; Video categorization; Scene image classification; Video text detection; Video text recognition
|
|
|
Thanh Nam Le, Muhammad Muzzamil Luqman, Anjan Dutta, Pierre Heroux, Christophe Rigaud, Clement Guerin, et al. (2018). Subgraph spotting in graph representations of comic book images. PRL - Pattern Recognition Letters, 112, 118–124.
Abstract: Graph-based representations are the most powerful data structures for extracting, representing and preserving the structural information of underlying data. Subgraph spotting is an interesting research problem, especially for studying and investigating the structural information based content-based image retrieval (CBIR) and query by example (QBE) in image databases. In this paper we address the problem of lack of freely available ground-truthed datasets for subgraph spotting and present a new dataset for subgraph spotting in graph representations of comic book images (SSGCI) with its ground-truth and evaluation protocol. Experimental results of two state-of-the-art methods of subgraph spotting are presented on the new SSGCI dataset.
Keywords: Attributed graph; Region adjacency graph; Graph matching; Graph isomorphism; Subgraph isomorphism; Subgraph spotting; Graph indexing; Graph retrieval; Query by example; Dataset and comic book images
|
|
2017 |
|
Lluis Gomez, & Dimosthenis Karatzas. (2017). TextProposals: a Text‐specific Selective Search Algorithm for Word Spotting in the Wild. PR - Pattern Recognition, 70, 60–74.
Abstract: Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (Goel et al., 2013; Almazán et al., 2014; Jaderberg et al., 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way.
Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (Almazán et al., 2014; Jaderberg et al., 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10% F-score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals.
|
|
|
Lluis Gomez, Anguelos Nicolaou, & Dimosthenis Karatzas. (2017). Improving patch‐based scene text script identification with ensembles of conjoined networks. PR - Pattern Recognition, 67, 85–96.
|
|
|
Pau Riba, Josep Llados, Alicia Fornes, & Anjan Dutta. (2017). Large-scale graph indexing using binary embeddings of node contexts for information spotting in document image databases. PRL - Pattern Recognition Letters, 87, 203–211.
Abstract: Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations. However, retrieving a query graph from a large dataset of graphs implies a high computational complexity. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. With this aim, in this paper we propose a graph indexation formalism applied to visual retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Then, each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in different real scenarios such as handwritten word spotting in images of historical documents or symbol spotting in architectural floor plans.
|
|