2018 |
|
Marçal Rusiñol, & Lluis Gomez. (2018). Avances en clasificación de imágenes en los últimos diez años. Perspectivas y limitaciones en el ámbito de archivos fotográficos históricos. Revista anual de la Asociación de Archiveros de Castilla y León, 161–174.
|
|
|
Marçal Rusiñol, J. Chazalon, & Katerine Diaz. (2018). Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness. MTAP - Multimedia Tools and Applications, 77(11), 13773–13798.
Abstract: This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here.
Keywords: Augmented reality; Document image matching; Educational applications
|
|
|
Sangheeta Roy, Palaiahnakote Shivakumara, Namita Jain, Vijeta Khare, Anjan Dutta, Umapada Pal, et al. (2018). Rough-Fuzzy based Scene Categorization for Text Detection and Recognition in Video. PR - Pattern Recognition, 80, 64–82.
Abstract: Scene image or video understanding is a challenging task especially when number of video types increases drastically with high variations in background and foreground. This paper proposes a new method for categorizing scene videos into different classes, namely, Animation, Outlet, Sports, e-Learning, Medical, Weather, Defense, Economics, Animal Planet and Technology, for the performance improvement of text detection and recognition, which is an effective approach for scene image or video understanding. For this purpose, at first, we present a new combination of rough and fuzzy concept to study irregular shapes of edge components in input scene videos, which helps to classify edge components into several groups. Next, the proposed method explores gradient direction information of each pixel in each edge component group to extract stroke based features by dividing each group into several intra and inter planes. We further extract correlation and covariance features to encode semantic features located inside planes or between planes. Features of intra and inter planes of groups are then concatenated to get a feature matrix. Finally, the feature matrix is verified with temporal frames and fed to a neural network for categorization. Experimental results show that the proposed method outperforms the existing state-of-the-art methods, at the same time, the performances of text detection and recognition methods are also improved significantly due to categorization.
Keywords: Rough set; Fuzzy set; Video categorization; Scene image classification; Video text detection; Video text recognition
|
|
|
Thanh Nam Le, Muhammad Muzzamil Luqman, Anjan Dutta, Pierre Heroux, Christophe Rigaud, Clement Guerin, et al. (2018). Subgraph spotting in graph representations of comic book images. PRL - Pattern Recognition Letters, 112, 118–124.
Abstract: Graph-based representations are the most powerful data structures for extracting, representing and preserving the structural information of underlying data. Subgraph spotting is an interesting research problem, especially for studying and investigating the structural information based content-based image retrieval (CBIR) and query by example (QBE) in image databases. In this paper we address the problem of lack of freely available ground-truthed datasets for subgraph spotting and present a new dataset for subgraph spotting in graph representations of comic book images (SSGCI) with its ground-truth and evaluation protocol. Experimental results of two state-of-the-art methods of subgraph spotting are presented on the new SSGCI dataset.
Keywords: Attributed graph; Region adjacency graph; Graph matching; Graph isomorphism; Subgraph isomorphism; Subgraph spotting; Graph indexing; Graph retrieval; Query by example; Dataset and comic book images
|
|
2017 |
|
Lluis Gomez, & Dimosthenis Karatzas. (2017). TextProposals: a Text‐specific Selective Search Algorithm for Word Spotting in the Wild. PR - Pattern Recognition, 70, 60–74.
Abstract: Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (Goel et al., 2013; Almazán et al., 2014; Jaderberg et al., 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way.
Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (Almazán et al., 2014; Jaderberg et al., 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10% F-score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals.
|
|