2018 |
|
Anjan Dutta, Josep Llados, Horst Bunke, & Umapada Pal. (2018). Product graph-based higher order contextual similarities for inexact subgraph matching. PR - Pattern Recognition, 76, 596–611.
Abstract: Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.
|
|
|
Fernando Vilariño, Dimosthenis Karatzas, & Alberto Valcarce. (2018). The Library Living Lab Barcelona: A participative approach to technology as an enabling factor for innovation in cultural spaces. Technology Innovation Management Review.
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Aura Hernandez-Sabate, Marçal Rusiñol, & Francesc J. Ferri. (2018). Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction. JMIV - Journal of Mathematical Imaging and Vision, 60(4), 512–524.
Abstract: This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
|
|
|
Marçal Rusiñol, & Lluis Gomez. (2018). Avances en clasificación de imágenes en los últimos diez años. Perspectivas y limitaciones en el ámbito de archivos fotográficos históricos. Revista anual de la Asociación de Archiveros de Castilla y León, 161–174.
|
|
|
Marçal Rusiñol, J. Chazalon, & Katerine Diaz. (2018). Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness. MTAP - Multimedia Tools and Applications, 77(11), 13773–13798.
Abstract: This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here.
Keywords: Augmented reality; Document image matching; Educational applications
|
|