|
Sangheeta Roy, Palaiahnakote Shivakumara, Namita Jain, Vijeta Khare, Anjan Dutta, Umapada Pal, et al. (2018). Rough-Fuzzy based Scene Categorization for Text Detection and Recognition in Video. PR - Pattern Recognition, 80, 64–82.
Abstract: Scene image or video understanding is a challenging task especially when number of video types increases drastically with high variations in background and foreground. This paper proposes a new method for categorizing scene videos into different classes, namely, Animation, Outlet, Sports, e-Learning, Medical, Weather, Defense, Economics, Animal Planet and Technology, for the performance improvement of text detection and recognition, which is an effective approach for scene image or video understanding. For this purpose, at first, we present a new combination of rough and fuzzy concept to study irregular shapes of edge components in input scene videos, which helps to classify edge components into several groups. Next, the proposed method explores gradient direction information of each pixel in each edge component group to extract stroke based features by dividing each group into several intra and inter planes. We further extract correlation and covariance features to encode semantic features located inside planes or between planes. Features of intra and inter planes of groups are then concatenated to get a feature matrix. Finally, the feature matrix is verified with temporal frames and fed to a neural network for categorization. Experimental results show that the proposed method outperforms the existing state-of-the-art methods, at the same time, the performances of text detection and recognition methods are also improved significantly due to categorization.
Keywords: Rough set; Fuzzy set; Video categorization; Scene image classification; Video text detection; Video text recognition
|
|
|
Lluis Gomez, Anguelos Nicolaou, & Dimosthenis Karatzas. (2017). Improving patch‐based scene text script identification with ensembles of conjoined networks. PR - Pattern Recognition, 67, 85–96.
|
|
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo, & Josep Llados. (2015). Efficient segmentation-free keyword spotting in historical document collections. PR - Pattern Recognition, 48(2), 545–555.
Abstract: In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.
Keywords: Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes, & Ernest Valveny. (2014). Segmentation-free Word Spotting with Exemplar SVMs. PR - Pattern Recognition, 47(12), 3967–3978.
Abstract: In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding-window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an unsupervised way. Then, we use a more discriminative representation based on Fisher Vector to rerank the best regions retrieved, and the most promising ones are used to expand the Exemplar SVM training set and improve the query representation. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
Keywords: Word spotting; Segmentation-free; Unsupervised learning; Reranking; Query expansion; Compression
|
|
|
Marçal Rusiñol, & Josep Llados. (2014). Boosting the Handwritten Word Spotting Experience by Including the User in the Loop. PR - Pattern Recognition, 47(3), 1063–1072.
Abstract: In this paper, we study the effect of taking the user into account in a query-by-example handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and two baseline word spotting approaches both based on the bag-of-visual-words model. We finally present two alternative ways of presenting the results to the user that might be more attractive and suitable to the user's needs than the classic ranked list.
Keywords: Handwritten word spotting; Query by example; Relevance feedback; Query fusion; Multidimensional scaling
|
|