|
Thanh Ha Do, Oriol Ramos Terrades, & Salvatore Tabbone. (2019). DSD: document sparse-based denoising algorithm. PAA - Pattern Analysis and Applications, 22(1), 177–186.
Abstract: In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising.
Keywords: Document denoising; Sparse representations; Sparse dictionary learning; Document degradation models
|
|
|
Marçal Rusiñol, David Aldavert, Ricardo Toledo, & Josep Llados. (2015). Efficient segmentation-free keyword spotting in historical document collections. PR - Pattern Recognition, 48(2), 545–555.
Abstract: In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.
Keywords: Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization
|
|
|
Jaume Gibert, Ernest Valveny, & Horst Bunke. (2013). Embedding of Graphs with Discrete Attributes Via Label Frequencies. IJPRAI - International Journal of Pattern Recognition and Artificial Intelligence, 27(3), 1360002–1360029.
Abstract: Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient.
Keywords: Discrete attributed graphs; graph embedding; graph classification
|
|
|
S.K. Jemni, Mohamed Ali Souibgui, Yousri Kessentini, & Alicia Fornes. (2022). Enhance to Read Better: A Multi-Task Adversarial Network for Handwritten Document Image Enhancement. PR - Pattern Recognition, 123, 108370.
Abstract: Handwritten document images can be highly affected by degradation for different reasons: Paper ageing, daily-life scenarios (wrinkles, dust, etc.), bad scanning process and so on. These artifacts raise many readability issues for current Handwritten Text Recognition (HTR) algorithms and severely devalue their efficiency. In this paper, we propose an end to end architecture based on Generative Adversarial Networks (GANs) to recover the degraded documents into a and form. Unlike the most well-known document binarization methods, which try to improve the visual quality of the degraded document, the proposed architecture integrates a handwritten text recognizer that promotes the generated document image to be more readable. To the best of our knowledge, this is the first work to use the text information while binarizing handwritten documents. Extensive experiments conducted on degraded Arabic and Latin handwritten documents demonstrate the usefulness of integrating the recognizer within the GAN architecture, which improves both the visual quality and the readability of the degraded document images. Moreover, we outperform the state of the art in H-DIBCO challenges, after fine tuning our pre-trained model with synthetically degraded Latin handwritten images, on this task.
|
|
|
Sounak Dey, Anguelos Nicolaou, Josep Llados, & Umapada Pal. (2019). Evaluation of the Effect of Improper Segmentation on Word Spotting. IJDAR - International Journal on Document Analysis and Recognition, 22, 361–374.
Abstract: Word spotting is an important recognition task in large-scale retrieval of document collections. In most of the cases, methods are developed and evaluated assuming perfect word segmentation. In this paper, we propose an experimental framework to quantify the goodness that word segmentation has on the performance achieved by word spotting methods in identical unbiased conditions. The framework consists of generating systematic distortions on segmentation and retrieving the original queries from the distorted dataset. We have tested our framework on several established and state-of-the-art methods using George Washington and Barcelona Marriage Datasets. The experiments done allow for an estimate of the end-to-end performance of word spotting methods.
|
|