|
Ernest Valveny, & Philippe Dosch. (2007). A General Framework for the Evaluation of Symbol Recognition Methods. International Journal on Document Analysis and Recognition, vol. 9(1), pp 59–74.
|
|
|
Josep Llados, Dimosthenis Karatzas, Joan Mas, & Gemma Sanchez. (2008). A Generic Architecture for the Conversion of Document Collections into Semantically Annotated Digital Archives. Journal of Universal Computer Science, 2912–2935.
Keywords: Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
|
|
|
Miquel Ferrer, Dimosthenis Karatzas, Ernest Valveny, I. Bardaji, & Horst Bunke. (2011). A Generic Framework for Median Graph Computation based on a Recursive Embedding Approach. CVIU - Computer Vision and Image Understanding, 115(7), 919–928.
Abstract: The median graph has been shown to be a good choice to obtain a represen- tative of a set of graphs. However, its computation is a complex problem. Recently, graph embedding into vector spaces has been proposed to obtain approximations of the median graph. The problem with such an approach is how to go from a point in the vector space back to a graph in the graph space. The main contribution of this paper is the generalization of this previ- ous method, proposing a generic recursive procedure that permits to recover the graph corresponding to a point in the vector space, introducing only the amount of approximation inherent to the use of graph matching algorithms. In order to evaluate the proposed method, we compare it with the set me- dian and with the other state-of-the-art embedding-based methods for the median graph computation. The experiments are carried out using four dif- ferent databases (one semi-artificial and three containing real-world data). Results show that with the proposed approach we can obtain better medi- ans, in terms of the sum of distances to the training graphs, than with the previous existing methods.
Keywords: Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
|
|
|
David Fernandez, Josep Llados, & Alicia Fornes. (2014). A graph-based approach for segmenting touching lines in historical handwritten documents. IJDAR - International Journal on Document Analysis and Recognition, 17(3), 293–312.
Abstract: Text line segmentation in handwritten documents is an important task in the recognition of historical documents. Handwritten document images contain text lines with multiple orientations, touching and overlapping characters between consecutive text lines and different document structures, making line segmentation a difficult task. In this paper, we present a new approach for handwritten text line segmentation solving the problems of touching components, curvilinear text lines and horizontally overlapping components. The proposed algorithm formulates line segmentation as finding the central path in the area between two consecutive lines. This is solved as a graph traversal problem. A graph is constructed using the skeleton of the image. Then, a path-finding algorithm is used to find the optimum path between text lines. The proposed algorithm has been evaluated on a comprehensive dataset consisting of five databases: ICDAR2009, ICDAR2013, UMD, the George Washington and the Barcelona Marriages Database. The proposed method outperforms the state-of-the-art considering the different types and difficulties of the benchmarking data.
Keywords: Text line segmentation; Handwritten documents; Document image processing; Historical document analysis
|
|
|
Josep Llados, & Enric Marti. (1999). A graph-edit algorithm for hand-drawn graphical document recognition and their automatic introduction into CAD systems. Machine Graphics & Vision, 8, 195–211.
|
|