|
Gemma Sanchez, Alicia Fornes, Joan Mas, & Josep Llados. (2007). Computer Vision Tools for Visually Impaired Children Learning.
|
|
|
Gemma Sanchez, Alicia Fornes, Joan Mas, & Josep Llados. (2007). Computer Vision Tools for Visually Impaired Children Learning.
|
|
|
Lei Kang, Pau Riba, Marcal Rusinol, Alicia Fornes, & Mauricio Villegas. (2021). Content and Style Aware Generation of Text-line Images for Handwriting Recognition. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, .
Abstract: Handwritten Text Recognition has achieved an impressive performance in public benchmarks. However, due to the high inter- and intra-class variability between handwriting styles, such recognizers need to be trained using huge volumes of manually labeled training data. To alleviate this labor-consuming problem, synthetic data produced with TrueType fonts has been often used in the training loop to gain volume and augment the handwriting style variability. However, there is a significant style bias between synthetic and real data which hinders the improvement of recognition performance. To deal with such limitations, we propose a generative method for handwritten text-line images, which is conditioned on both visual appearance and textual content. Our method is able to produce long text-line samples with diverse handwriting styles. Once properly trained, our method can also be adapted to new target data by only accessing unlabeled text-line images to mimic handwritten styles and produce images with any textual content. Extensive experiments have been done on making use of the generated samples to boost Handwritten Text Recognition performance. Both qualitative and quantitative results demonstrate that the proposed approach outperforms the current state of the art.
|
|
|
Lluis Pere de las Heras, Oriol Ramos Terrades, Sergi Robles, & Gemma Sanchez. (2015). CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool. IJDAR - International Journal on Document Analysis and Recognition, 18(1), 15–30.
Abstract: Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research.
|
|
|
Alicia Fornes, Anjan Dutta, Albert Gordo, & Josep Llados. (2012). CVC-MUSCIMA: A Ground-Truth of Handwritten Music Score Images for Writer Identification and Staff Removal. IJDAR - International Journal on Document Analysis and Recognition, 15(3), 243–251.
Abstract: 0,405JCR
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper we present the CVC-MUSCIMA database and ground-truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50 different musicians. It has been especially designed for writer identification and staff removal tasks. In addition to the description of the dataset, ground-truth, partitioning and evaluation metrics, we also provide some base-line results for easing the comparison between different approaches.
Keywords: Music scores; Handwritten documents; Writer identification; Staff removal; Performance evaluation; Graphics recognition; Ground truths
|
|