|
Ernest Valveny, & Enric Marti. (2000). Deformable Template Matching within a Bayesian Framework for Hand-Written Graphic Symbol Recognition. Graphics Recognition Recent Advances, 1941, 193–208.
Abstract: We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of information during line detection. It is defined as an energy minimization problem, using a Bayesian framework which allows to combine fidelity to ideal shape of the symbol and flexibility to modify the symbol in order to get the best fit to the binary input image. Prior to matching, we find the best global transformation of the symbol to start the recognition process, based on the distance between symbol lines and image lines. We have applied this method to the recognition of dimensions and symbols in architectural floor plans and we show its flexibility to recognize distorted symbols.
|
|
|
Josep Llados, & Enric Marti. (1999). A graph-edit algorithm for hand-drawn graphical document recognition and their automatic introduction into CAD systems. Machine Graphics & Vision, 8, 195–211.
|
|
|
Christophe Rigaud, Clement Guerin, Dimosthenis Karatzas, Jean-Christophe Burie, & Jean-Marc Ogier. (2015). Knowledge-driven understanding of images in comic books. IJDAR - International Journal on Document Analysis and Recognition, 18(3), 199–221.
Abstract: Document analysis is an active field of research, which can attain a complete understanding of the semantics of a given document. One example of the document understanding process is enabling a computer to identify the key elements of a comic book story and arrange them according to a predefined domain knowledge. In this study, we propose a knowledge-driven system that can interact with bottom-up and top-down information to progressively understand the content of a document. We model the comic book’s and the image processing domains knowledge for information consistency analysis. In addition, different image processing methods are improved or developed to extract panels, balloons, tails, texts, comic characters and their semantic relations in an unsupervised way.
Keywords: Document Understanding; comics analysis; expert system
|
|
|
Gemma Sanchez, Josep Llados, & K. Tombre. (2002). A mean string algorithm to compute the average among a set of 2D shapes. PRL - Pattern Recognition Letters, 23(1-3), 203–214.
|
|
|
Pau Riba, Josep Llados, Alicia Fornes, & Anjan Dutta. (2017). Large-scale graph indexing using binary embeddings of node contexts for information spotting in document image databases. PRL - Pattern Recognition Letters, 87, 203–211.
Abstract: Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations. However, retrieving a query graph from a large dataset of graphs implies a high computational complexity. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. With this aim, in this paper we propose a graph indexation formalism applied to visual retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Then, each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in different real scenarios such as handwritten word spotting in images of historical documents or symbol spotting in architectural floor plans.
|
|