|
Marc Sunset Perez, Marc Comino Trinidad, Dimosthenis Karatzas, Antonio Chica Calaf, & Pere Pau Vazquez Alcocer. (2016). Development of general‐purpose projection‐based augmented reality systems. IADIs - IADIs international journal on computer science and information systems, 1–18.
Abstract: Despite the large amount of methods and applications of augmented reality, there is little homogenizatio n on the software platforms that support them. An exception may be the low level control software that is provided by some high profile vendors such as Qualcomm and Metaio. However, these provide fine grain modules for e.g. element tracking. We are more co ncerned on the application framework, that includes the control of the devices working together for the development of the AR experience. In this paper we describe the development of a software framework for AR setups. We concentrate on the modular design of the framework, but also on some hard problems such as the calibration stage, crucial for projection – based AR. The developed framework is suitable and has been tested in AR applications using camera – projector pairs, for both fixed and nomadic setups
|
|
|
Anjan Dutta, & Hichem Sahbi. (2018). Stochastic Graphlet Embedding. TNNLS - IEEE Transactions on Neural Networks and Learning Systems, , 1–14.
Abstract: Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
Keywords: Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality
|
|
|
Arnau Baro, Pau Riba, Jorge Calvo-Zaragoza, & Alicia Fornes. (2019). From Optical Music Recognition to Handwritten Music Recognition: a Baseline. PRL - Pattern Recognition Letters, 123, 1–8.
Abstract: Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community.
|
|
|
Mohamed Ali Souibgui, Asma Bensalah, Jialuo Chen, Alicia Fornes, & Michelle Waldispühl. (2023). A User Perspective on HTR methods for the Automatic Transcription of Rare Scripts: The Case of Codex Runicus Just Accepted. JOCCH - ACM Journal on Computing and Cultural Heritage, 15(4), 1–18.
Abstract: Recent breakthroughs in Artificial Intelligence, Deep Learning and Document Image Analysis and Recognition have significantly eased the creation of digital libraries and the transcription of historical documents. However, for documents in rare scripts with few labelled training data available, current Handwritten Text Recognition (HTR) systems are too constraint. Moreover, research on HTR often focuses on technical aspects only, and rarely puts emphasis on implementing software tools for scholars in Humanities. In this article, we describe, compare and analyse different transcription methods for rare scripts. We evaluate their performance in a real use case of a medieval manuscript written in the runic script (Codex Runicus) and discuss advantages and disadvantages of each method from the user perspective. From this exhaustive analysis and comparison with a fully manual transcription, we raise conclusions and provide recommendations to scholars interested in using automatic transcription tools.
|
|
|
Josep Llados, J. Lopez-Krahe, & D. Archambault. (2007). Special Issue on Information Technologies for Visually Impaired People. Novatica, 4–7.
|
|