|
Oriol Ramos Terrades, Albert Berenguel, & Debora Gil. (2022). A Flexible Outlier Detector Based on a Topology Given by Graph Communities. BDR - Big Data Research, 29, 100332.
Abstract: Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings.
Keywords: Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors
|
|
|
Chenyang Fu, Kaida Xiao, Dimosthenis Karatzas, & Sophie Wuerger. (2011). Investigation of Unique Hue Setting Changes with Ageing. COL - Chinese Optics Letters, 9(5), 053301-5.
Abstract: Clromatic sensitivity along the protan, deutan, and tritan lines and the loci of the unique hues (red, green, yellow, blue) for a very large sample (n = 185) of colour-normal observers ranging from 18 to 75 years of age are assessed. Visual judgments are obtained under normal viewing conditions using colour patches on self-luminous display under controlled adaptation conditions. Trivector discrimination thresholds show an increase as a function of age along the protan, deutan, and tritan axes, with the largest increase present along the tritan line, less pronounced shifts in unique hue settings are also observed. Based on the chromatic (protan, deutan, tritan) thresholds and using scaled cone signals, we predict the unique hue changes with ageing. A dependency on age for unique red and unique yellow for predicted hue angle is found. We conclude that the chromatic sensitivity deteriorates significantly with age, whereas the appearance of unique hues is much less affected, remaining almost constant despite the known changes in the ocular media.
|
|
|
Marçal Rusiñol, J. Chazalon, & Katerine Diaz. (2018). Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness. MTAP - Multimedia Tools and Applications, 77(11), 13773–13798.
Abstract: This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here.
Keywords: Augmented reality; Document image matching; Educational applications
|
|
|
Anjan Dutta, Pau Riba, Josep Llados, & Alicia Fornes. (2020). Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition. NEUCOMA - Neural Computing and Applications, 32, 11579–11596.
Abstract: Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods.
|
|
|
Joan Mas, Josep Llados, Gemma Sanchez, & J.A. Jorge. (2010). A syntactic approach based on distortion-tolerant Adjacency Grammars and a spatial-directed parser to interpret sketched diagrams. PR - Pattern Recognition, 43(12), 4148–4164.
Abstract: This paper presents a syntactic approach based on Adjacency Grammars (AG) for sketch diagram modeling and understanding. Diagrams are a combination of graphical symbols arranged according to a set of spatial rules defined by a visual language. AG describe visual shapes by productions defined in terms of terminal and non-terminal symbols (graphical primitives and subshapes), and a set functions describing the spatial arrangements between symbols. Our approach to sketch diagram understanding provides three main contributions. First, since AG are linear grammars, there is a need to define shapes and relations inherently bidimensional using a sequential formalism. Second, our parsing approach uses an indexing structure based on a spatial tessellation. This serves to reduce the search space when finding candidates to produce a valid reduction. This allows order-free parsing of 2D visual sentences while keeping combinatorial explosion in check. Third, working with sketches requires a distortion model to cope with the natural variations of hand drawn strokes. To this end we extended the basic grammar with a distortion measure modeled on the allowable variation on spatial constraints associated with grammar productions. Finally, the paper reports on an experimental framework an interactive system for sketch analysis. User tests performed on two real scenarios show that our approach is usable in interactive settings.
Keywords: Syntactic Pattern Recognition; Symbol recognition; Diagram understanding; Sketched diagrams; Adjacency Grammars; Incremental parsing; Spatial directed parsing
|
|