|
Jaume Amores and Petia Radeva. 2005. Registration and Retrieval of Highly Elastic Bodies using Contextual Information. PRL, 26(11), 1720–1731.
|
|
|
Katerine Diaz, Francesc J. Ferri and W. Diaz. 2015. Incremental Generalized Discriminative Common Vectors for Image Classification. TNNLS, 26(8), 1761–1775.
Abstract: Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model.
|
|
|
Jaume Amores, N. Sebe and Petia Radeva. 2006. Boosting the distance estimation: Application to the K-Nearest Neighbor Classifier. PRL, 27(3), 201–209.
|
|
|
Fadi Dornaika and Angel Sappa. 2009. A Featureless and Stochastic Approach to On-board Stereo Vision System Pose. IMAVIS, 27(9), 1382–1393.
Abstract: This paper presents a direct and stochastic technique for real-time estimation of on-board stereo head’s position and orientation. Unlike existing works which rely on feature extraction either in the image domain or in 3D space, our proposed approach directly estimates the unknown parameters from the stream of stereo pairs’ brightness. The pose parameters are tracked using the particle filtering framework which implicitly enforces the smoothness constraints on the estimated parameters. The proposed technique can be used with a driver assistance applications as well as with augmented reality applications. Extended experiments on urban environments with different road geometries are presented. Comparisons with a 3D data-based approach are presented. Moreover, we provide a performance study aiming at evaluating the accuracy of the proposed approach.
Keywords: On-board stereo vision system; Pose estimation; Featureless approach; Particle filtering; Image warping
|
|
|
Arnau Ramisa, Adriana Tapus, David Aldavert, Ricardo Toledo and Ramon Lopez de Mantaras. 2009. Robust Vision-Based Localization using Combinations of Local Feature Regions Detectors. AR, 27(4), 373–385.
Abstract: This paper presents a vision-based approach for mobile robot localization. The model of the environment is topological. The new approach characterizes a place using a signature. This signature consists of a constellation of descriptors computed over different types of local affine covariant regions extracted from an omnidirectional image acquired rotating a standard camera with a pan-tilt unit. This type of representation permits a reliable and distinctive environment modelling. Our objectives were to validate the proposed method in indoor environments and, also, to find out if the combination of complementary local feature region detectors improves the localization versus using a single region detector. Our experimental results show that if false matches are effectively rejected, the combination of different covariant affine region detectors increases notably the performance of the approach by combining the different strengths of the individual detectors. In order to reduce the localization time, two strategies are evaluated: re-ranking the map nodes using a global similarity measure and using standard perspective view field of 45°.
In order to systematically test topological localization methods, another contribution proposed in this work is a novel method to see the degradation in localization performance as the robot moves away from the point where the original signature was acquired. This allows to know the robustness of the proposed signature. In order for this to be effective, it must be done in several, variated, environments that test all the possible situations in which the robot may have to perform localization.
|
|
|
Fei Yang, Luis Herranz, Joost Van de Weijer, Jose Antonio Iglesias, Antonio Lopez and Mikhail Mozerov. 2020. Variable Rate Deep Image Compression with Modulated Autoencoder. SPL, 27, 331–335.
Abstract: Variable rate is a requirement for flexible and adaptable image and video compression. However, deep image compression methods (DIC) are optimized for a single fixed rate-distortion (R-D) tradeoff. While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models. Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder. However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bitrates. To address these limitations, we formulate the problem of variable R-D optimization for DIC, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific R-D tradeoff via a modulation network. Jointly training this modulated autoencoder and the modulation network provides an effective way to navigate the R-D operational curve. Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters.
|
|
|
Gemma Rotger, Francesc Moreno-Noguer, Felipe Lumbreras and Antonio Agudo. 2019. Detailed 3D face reconstruction from a single RGB image.
Abstract: This paper introduces a method to obtain a detailed 3D reconstruction of facial skin from a single RGB image.
To this end, we propose the exclusive use of an input image without requiring any information about the observed material nor training data to model the wrinkle properties. They are detected and characterized directly from the image via a simple and effective parametric model, determining several features such as location, orientation, width, and height. With these ingredients, we propose to minimize a photometric error to retrieve the final detailed 3D map, which is initialized by current techniques based on deep learning. In contrast with other approaches, we only require estimating a depth parameter, making our approach fast and intuitive. Extensive experimental evaluation is presented in a wide variety of synthetic and real images, including different skin properties and facial
expressions. In all cases, our method outperforms the current approaches regarding 3D reconstruction accuracy, providing striking results for both large and fine wrinkles.
Keywords: 3D Wrinkle Reconstruction; Face Analysis, Optimization.
|
|
|
Fadi Dornaika and Angel Sappa. 2007. Rigid and Non-rigid Face Motion Tracking by Aligning Texture Maps and Stereo 3D Models. PRL, 28(15), 2116–2126.
|
|
|
Carme Julia, Angel Sappa, Felipe Lumbreras, Joan Serrat and Antonio Lopez. 2010. An Iterative Multiresolution Scheme for SFM with Missing Data: single and multiple object scenes. IMAVIS, 28(1), 164–176.
Abstract: Most of the techniques proposed for tackling the Structure from Motion problem (SFM) cannot deal with high percentages of missing data in the matrix of trajectories. Furthermore, an additional problem should be faced up when working with multiple object scenes: the rank of the matrix of trajectories should be estimated. This paper presents an iterative multiresolution scheme for SFM with missing data to be used in both the single and multiple object cases. The proposed scheme aims at recovering missing entries in the original input matrix. The objective is to improve the results by applying a factorization technique to the partially or totally filled in matrix instead of to the original input one. Experimental results obtained with synthetic and real data sequences, containing single and multiple objects, are presented to show the viability of the proposed approach.
|
|
|
Fadi Dornaika and Angel Sappa. 2009. Instantaneous 3D motion from image derivatives using the Least Trimmed Square Regression. PRL, 30(5), 535–543.
Abstract: This paper presents a new technique to the instantaneous 3D motion estimation. The main contributions are as follows. First, we show that the 3D camera or scene velocity can be retrieved from image derivatives only assuming that the scene contains a dominant plane. Second, we propose a new robust algorithm that simultaneously provides the Least Trimmed Square solution and the percentage of inliers-the non-contaminated data. Experiments on both synthetic and real image sequences demonstrated the effectiveness of the developed method. Those experiments show that the new robust approach can outperform classical robust schemes.
|
|