|
Angel Sappa and 6 others. 2016. Monocular visual odometry: A cross-spectral image fusion based approach. RAS, 85, 26–36.
Abstract: This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is empirically obtained by means of a mutual information based evaluation metric. The objective is to have a flexible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odometry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme.
Keywords: Monocular visual odometry; LWIR-RGB cross-spectral imaging; Image fusion
|
|
|
Miguel Oliveira, Victor Santos, Angel Sappa, P. Dias and A. Moreira. 2016. Incremental texture mapping for autonomous driving. RAS, 84, 113–128.
Abstract: Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.
Keywords: Scene reconstruction; Autonomous driving; Texture mapping
|
|
|
Javier Marin and Sergio Escalera. 2021. SSSGAN: Satellite Style and Structure Generative Adversarial Networks. Remote Sensing, 13(19), 3984.
Abstract: This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area.
|
|
|
Hannes Mueller, Andre Groeger, Jonathan Hersh, Andrea Matranga and Joan Serrat. 2021. Monitoring war destruction from space using machine learning. PNAS, 118(23), e2025400118.
Abstract: Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete, and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human-rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep-learning techniques combined with label augmentation and spatial and temporal smoothing, which exploit the underlying spatial and temporal structure of destruction. As a proof of concept, we apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. Our approach allows generating destruction data with unprecedented scope, resolution, and frequency—and makes use of the ever-higher frequency at which satellite imagery becomes available.
|
|
|
J. Pladellorens, Joan Serrat, A. Castell and M.J. Yzuel. 1993. Using mathematical morphology to determine left ventricular contours..
|
|
|
A. Pujol, Jordi Vitria, Felipe Lumbreras and Juan J. Villanueva. 2001. Topological principal component analysis for face encoding and recognition. PRL, 22(6-7), 769–776.
|
|
|
Jaume Amores and Petia Radeva. 2005. Registration and Retrieval of Highly Elastic Bodies using Contextual Information. PRL, 26(11), 1720–1731.
|
|
|
Jaume Amores, N. Sebe and Petia Radeva. 2006. Boosting the distance estimation: Application to the K-Nearest Neighbor Classifier. PRL, 27(3), 201–209.
|
|
|
Fadi Dornaika and Angel Sappa. 2007. Rigid and Non-rigid Face Motion Tracking by Aligning Texture Maps and Stereo 3D Models. PRL, 28(15), 2116–2126.
|
|
|
Fadi Dornaika and Angel Sappa. 2009. Instantaneous 3D motion from image derivatives using the Least Trimmed Square Regression. PRL, 30(5), 535–543.
Abstract: This paper presents a new technique to the instantaneous 3D motion estimation. The main contributions are as follows. First, we show that the 3D camera or scene velocity can be retrieved from image derivatives only assuming that the scene contains a dominant plane. Second, we propose a new robust algorithm that simultaneously provides the Least Trimmed Square solution and the percentage of inliers-the non-contaminated data. Experiments on both synthetic and real image sequences demonstrated the effectiveness of the developed method. Those experiments show that the new robust approach can outperform classical robust schemes.
|
|