|
Enric Marti, Debora Gil, Marc Vivet, & Carme Julia. (2009)." Uso de recursos virtuales en Aprendizaje Basado en Proyectos. Una experiencia en la asignatura de Gráficos por Computador" . Octava Jornada sobre Aprendizaje Cooperativo. Lleida.
|
|
|
Enric Marti, Jaume Rocarias, Debora Gil, Aura Hernandez-Sabate, Jaume Garcia, Carme Julia, et al. (2009). "Uso de recursos virtuales en Aprendizaje Basado en Proyectos. Una experiencia en la asignatura de Gráficos por Computador ". Vigo (Spain).
Abstract: Presentamos una experiencia en Aprendizaje Basado en Proyectos (ABP) realizada los últimos cuatro años en Gráficos por Computador 2, asignatura de Ingeniería Informática, de la Escuela Técnica Superior de Ingeniería (ETSE) de la Universidad Autónoma de Barcelona (UAB). Utilizamos un entorno Moodle adaptado por nosotros llamado Caronte para poder gestionar la documentación generada en ABP. Primero se presenta la asignatura, basada en dos itinerarios para cursarla: ABP y TPPE (Teoría, Problemas, Prácticas, Examen). El alumno debe escoger uno de ellos. Ambos itinerarios generan una cantidad importante de documentación (entregas de trabajos y prácticas, correcciones, ejercicios, etc.) a gestionar. En la comunicación presentamos los espacios electrónicos Moodle de ambos itinerarios. Finalmente, mostramos los resultados de encuestas realizadas a los alumnos para finalmente exponer las conclusiones de la experiencia en ABP y el uso de Moodle, así como plantear mejoras y temas de discusión.
Keywords: Aprendizaje Basado en Proyectos; Project Based Learning; Aprendizaje Cooperativo; Recursos Virtuales para el Aprendizaje Cooperativo; Moodle
|
|
|
Albert Andaluz, Francesc Carreras, Debora Gil, & Jaume Garcia. (2010). "Una aplicació amigable pel càlcul de indicadors clínics del ventricle esquerre ". Barcelona: Biocat.
|
|
|
Enric Marti, Ferran Poveda, Antoni Gurgui, & Debora Gil. (2011). "Aprendizaje Basado en Proyectos en Ingeniería Informática. Resultados y reflexiones de seis años de experiencia ".
Abstract: In this workshop a 6 years experience in Project Based Learning (PBL) in Computer Graphics, Computer Engineering course at the Autonomous University of Barcelona (UAB) is presented. We use a Moodle environment suited to manage the documentation generated in PBL. The course is organized by means of two alternative routes: a classic itinerary of lectures and test-based evaluation and another with PBL. In the PBL itinerary we explain the organization in teamgroups, homework tutoring and monitoring and evaluation guidelines for students. We provide some of the work done by students, and the results of assessment surveys carried out to students during these years. We report the evolution of our PBL itinerary in terms of, both, organization and student surveys.
The workshop aims at discussing about on the advantages and disadvantages of using these active methodologies in technical degrees such as computer engineering, in order to debate about the most suitable way of organizing PBL and assessing students learning rate.
|
|
|
Enric Marti, Ferran Poveda, Antoni Gurgui, Jaume Rocarias, Debora Gil, & Aura Hernandez-Sabate. (2013). "Una experiencia de estructura, funcionamiento y evaluación de la asignatura de graficos por computador con metodologia de aprendizaje basado en proyectos ".
Abstract: IV Congreso Internacional UNIVEST
|
|
|
Enric Marti, Ferran Poveda, Antoni Gurgui, Jaume Rocarias, & Debora Gil. (2013). "Una propuesta de seguimiento, tutorías on line y evaluación en la metodología de Aprendizaje Basado en Proyectos ".
|
|
|
Enric Marti, Antoni Gurgui, Debora Gil, Aura Hernandez-Sabate, Jaume Rocarias, & Ferran Poveda. (2014). "ABP on line: Seguimiento, estregas y evaluación en aprendizaje basado en proyectos ".
|
|
|
Carles Sanchez, Oriol Ramos Terrades, Patricia Marquez, Enric Marti, Jaume Rocarias, & Debora Gil. (2014). "Evaluación automática de prácticas en Moodle para el aprendizaje autónomo en Ingenierías ".
|
|
|
Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, et al. (2018)." Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge" .
Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multiparametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in preoperative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.
Keywords: BraTS; challenge; brain; tumor; segmentation; machine learning; glioma; glioblastoma; radiomics; survival; progression; RECIST
|
|
|
Debora Gil, Katerine Diaz, Carles Sanchez, & Aura Hernandez-Sabate. (2020). "Early Screening of SARS-CoV-2 by Intelligent Analysis of X-Ray Images ".
Abstract: Future SARS-CoV-2 virus outbreak COVID-XX might possibly occur during the next years. However the pathology in humans is so recent that many clinical aspects, like early detection of complications, side effects after recovery or early screening, are currently unknown. In spite of the number of cases of COVID-19, its rapid spread putting many sanitary systems in the edge of collapse has hindered proper collection and analysis of the data related to COVID-19 clinical aspects. We describe an interdisciplinary initiative that integrates clinical research, with image diagnostics and the use of new technologies such as artificial intelligence and radiomics with the aim of clarifying some of SARS-CoV-2 open questions. The whole initiative addresses 3 main points: 1) collection of standardize data including images, clinical data and analytics; 2) COVID-19 screening for its early diagnosis at primary care centers; 3) define radiomic signatures of COVID-19 evolution and associated pathologies for the early treatment of complications. In particular, in this paper we present a general overview of the project, the experimental design and first results of X-ray COVID-19 detection using a classic approach based on HoG and feature selection. Our experiments include a comparison to some recent methods for COVID-19 screening in X-Ray and an exploratory analysis of the feasibility of X-Ray COVID-19 screening. Results show that classic approaches can outperform deep-learning methods in this experimental setting, indicate the feasibility of early COVID-19 screening and that non-COVID infiltration is the group of patients most similar to COVID-19 in terms of radiological description of X-ray. Therefore, an efficient COVID-19 screening should be complemented with other clinical data to better discriminate these cases.
|
|