|
Pau Cano, Alvaro Caravaca, Debora Gil, & Eva Musulen. (2023). "Diagnosis of Helicobacter pylori using AutoEncoders for the Detection of Anomalous Staining Patterns in Immunohistochemistry Images ".
Abstract: This work addresses the detection of Helicobacter pylori a bacterium classified since 1994 as class 1 carcinogen to humans. By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest. This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples.
We propose to use autoencoders to learn latent patterns of healthy tissue and detect H. pylori as an anomaly in image staining. Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance. In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0.97 AUC in the detection of H. pylori.
|
|
|
Debora Gil, Katerine Diaz, Carles Sanchez, & Aura Hernandez-Sabate. (2020). "Early Screening of SARS-CoV-2 by Intelligent Analysis of X-Ray Images ".
Abstract: Future SARS-CoV-2 virus outbreak COVID-XX might possibly occur during the next years. However the pathology in humans is so recent that many clinical aspects, like early detection of complications, side effects after recovery or early screening, are currently unknown. In spite of the number of cases of COVID-19, its rapid spread putting many sanitary systems in the edge of collapse has hindered proper collection and analysis of the data related to COVID-19 clinical aspects. We describe an interdisciplinary initiative that integrates clinical research, with image diagnostics and the use of new technologies such as artificial intelligence and radiomics with the aim of clarifying some of SARS-CoV-2 open questions. The whole initiative addresses 3 main points: 1) collection of standardize data including images, clinical data and analytics; 2) COVID-19 screening for its early diagnosis at primary care centers; 3) define radiomic signatures of COVID-19 evolution and associated pathologies for the early treatment of complications. In particular, in this paper we present a general overview of the project, the experimental design and first results of X-ray COVID-19 detection using a classic approach based on HoG and feature selection. Our experiments include a comparison to some recent methods for COVID-19 screening in X-Ray and an exploratory analysis of the feasibility of X-Ray COVID-19 screening. Results show that classic approaches can outperform deep-learning methods in this experimental setting, indicate the feasibility of early COVID-19 screening and that non-COVID infiltration is the group of patients most similar to COVID-19 in terms of radiological description of X-ray. Therefore, an efficient COVID-19 screening should be complemented with other clinical data to better discriminate these cases.
|
|
|
Oriol Ramos Terrades, Albert Berenguel, & Debora Gil. (2020). "A flexible outlier detector based on a topology given by graph communities ".
Abstract: Outlier, or anomaly, detection is essential for optimal performance of machine learning methods and statistical predictive models. It is not just a technical step in a data cleaning process but a key topic in many fields such as fraudulent document detection, in medical applications and assisted diagnosis systems or detecting security threats. In contrast to population-based methods, neighborhood based local approaches are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. However, a main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters. This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world data sets show that our approach overall outperforms, both, local and global strategies in multi and single view settings.
|
|
|
Enric Marti, Antoni Gurgui, Debora Gil, Aura Hernandez-Sabate, Jaume Rocarias, & Ferran Poveda. (2014). "ABP on line: Seguimiento, estregas y evaluación en aprendizaje basado en proyectos ".
|
|
|
Carles Sanchez, Oriol Ramos Terrades, Patricia Marquez, Enric Marti, Jaume Rocarias, & Debora Gil. (2014). "Evaluación automática de prácticas en Moodle para el aprendizaje autónomo en Ingenierías ".
|
|
|
Enric Marti, Ferran Poveda, Antoni Gurgui, Jaume Rocarias, Debora Gil, & Aura Hernandez-Sabate. (2013). "Una experiencia de estructura, funcionamiento y evaluación de la asignatura de graficos por computador con metodologia de aprendizaje basado en proyectos ".
Abstract: IV Congreso Internacional UNIVEST
|
|
|
Enric Marti, Ferran Poveda, Antoni Gurgui, Jaume Rocarias, & Debora Gil. (2013). "Una propuesta de seguimiento, tutorías on line y evaluación en la metodología de Aprendizaje Basado en Proyectos ".
|
|
|
Enric Marti, Ferran Poveda, Antoni Gurgui, & Debora Gil. (2011). "Aprendizaje Basado en Proyectos en Ingeniería Informática. Resultados y reflexiones de seis años de experiencia ".
Abstract: In this workshop a 6 years experience in Project Based Learning (PBL) in Computer Graphics, Computer Engineering course at the Autonomous University of Barcelona (UAB) is presented. We use a Moodle environment suited to manage the documentation generated in PBL. The course is organized by means of two alternative routes: a classic itinerary of lectures and test-based evaluation and another with PBL. In the PBL itinerary we explain the organization in teamgroups, homework tutoring and monitoring and evaluation guidelines for students. We provide some of the work done by students, and the results of assessment surveys carried out to students during these years. We report the evolution of our PBL itinerary in terms of, both, organization and student surveys.
The workshop aims at discussing about on the advantages and disadvantages of using these active methodologies in technical degrees such as computer engineering, in order to debate about the most suitable way of organizing PBL and assessing students learning rate.
|
|
|
Albert Andaluz, Francesc Carreras, Debora Gil, & Jaume Garcia. (2010). "Una aplicació amigable pel càlcul de indicadors clínics del ventricle esquerre ". Barcelona: Biocat.
|
|
|
Enric Marti, Jaume Rocarias, Ricardo Toledo, & Aura Hernandez-Sabate. (2009). "Caronte: plataforma Moodle con gestion flexible de grupos. Primeras experiencias en asignaturas de Ingenieria Informatica ".
Abstract: En este artículo se presenta Caronte, entorno LMS (Learning Management System) basado en Moodle. Una característica importante del entorno es la gestión flexible de grupos en una asignatura. Entendemos por grupo un conjunto de alumnos que realizan un trabajo y uno de ellos entrega la actividad propuesta (práctica, encuesta, etc.) en representación del grupo. Hemos trabajado en la confección de estos grupos, implementando un sistema de inscripción por contraseña.
Caronte ofrece un conjunto de actividades basadas en este concepto de grupo: encuestas, tareas (entrega de trabajos o prácticas), encuestas de autoevaluación y cuestionarios, entre otras.
Basada en nuestra actividad de encuesta, hemos definido una actividad de Control, que permite un cierto feedback electrónico del profesor sobre la actividad de los alumnos.
Finalmente, se presenta un resumen de las experiencias de uso de Caronte sobre asignaturas de Ingeniería Informática en el curso 2007-08.
|
|