|
Enric Marti, Jaume Rocarias, Petia Radeva, Ricardo Toledo, & Jordi Vitria. (2007)." Caronte: implementació i millora d activitats d avaluació i primeres experiències amb diferents organitzacions docents" . Bellaterra (Spain).
|
|
|
Enric Marti, Jordi Rocarias, & Ricardo Toledo. (2008)." Caront: gestió flexible de grups d’alumnes en una asignatura i activitats sobre grups. Nova activitat de control" .
|
|
|
Enric Marti, Jaume Rocarias, & Ricardo Toledo. (2008). Caronte: gestión flexible de grupos de alumnos en asignaturas de universidad y actividades sobre estos grupos . Barcelona.
|
|
|
Elena Valderrama, Joan Oliver, Josep Maria-Basart, Enric Marti, Petia Radeva, Ricardo Toledo, et al. (2005)." Convergencia al EEES de la ingeniería informática. Título de Grado en tecnología (Informática)" .
Abstract: Elena Valderrama
|
|
|
Fernando Vilariño, & Enric Marti. (2008)." New didactic techniques in the EHES applying mobile technologies" .
|
|
|
Enric Marti, Ferran Poveda, Antoni Gurgui, Jaume Rocarias, & Debora Gil. (2013). "Una propuesta de seguimiento, tutorías on line y evaluación en la metodología de Aprendizaje Basado en Proyectos ".
|
|
|
Enric Marti, Antoni Gurgui, Debora Gil, Aura Hernandez-Sabate, Jaume Rocarias, & Ferran Poveda. (2014). "ABP on line: Seguimiento, estregas y evaluación en aprendizaje basado en proyectos ".
|
|
|
Carles Sanchez, Oriol Ramos Terrades, Patricia Marquez, Enric Marti, Jaume Rocarias, & Debora Gil. (2014). "Evaluación automática de prácticas en Moodle para el aprendizaje autónomo en Ingenierías ".
|
|
|
Pau Cano, Alvaro Caravaca, Debora Gil, & Eva Musulen. (2023). "Diagnosis of Helicobacter pylori using AutoEncoders for the Detection of Anomalous Staining Patterns in Immunohistochemistry Images ".
Abstract: This work addresses the detection of Helicobacter pylori a bacterium classified since 1994 as class 1 carcinogen to humans. By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest. This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples.
We propose to use autoencoders to learn latent patterns of healthy tissue and detect H. pylori as an anomaly in image staining. Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance. In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0.97 AUC in the detection of H. pylori.
|
|
|
Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, et al. (2018)." Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge" .
Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multiparametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in preoperative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.
Keywords: BraTS; challenge; brain; tumor; segmentation; machine learning; glioma; glioblastoma; radiomics; survival; progression; RECIST
|
|