|
Hanne Kause, Patricia Marquez, Andrea Fuster, Aura Hernandez-Sabate, Luc Florack, Debora Gil, et al. (2015)." Quality Assessment of Optical Flow in Tagging MRI" In 5th Dutch Bio-Medical Engineering Conference BME2015.
|
|
|
Josep Llados, & Enric Marti. (1997)." Playing with error-tolerant subgraph isomorphism in line drawings" In VII National Symposium on Pattern Recognition and image Analysis.
|
|
|
Oriol Rodriguez-Leon, Eduard Fernandez-Nofrerias, Josefina Mauri, Vicente del Valle, Debora Gil, A.Barrios, et al. (2006)." Perfusion ratio: A new tool to objectively assess microcirculation perfusion after primary Percutaneous Coronary Intervention" In World Congress of Cardiology (859). Barcelona (Spain).
|
|
|
Jaume Garcia, Debora Gil, Francesc Carreras, Sandra Pujades, R.Leta, Xavier Alomar, et al. (2008). "Patrons de Normalitat Regional per la Valoració de la Funció del Ventricle Esquerre " In XX Congrés de la Societat Catalana de Cardiologia (60). Barcelona.
Abstract: Les malalties cardiovasculars afecten les propietats contràctils de la banda ventricular i provoquen una variació de la funció del Ventricle Esquerre (VE) . Només els indicadors locals (strains, la deformació del teixit) són capaços de detectar anomalies en territoris específics del VE . Patrons de normalitat regionals d’aquests paràmetres serien d’utilitat a l’hora de valorar-ne la funció .
Presentem un Domini Paramètric Normalitzat (DPN) que permet comparar dades de diferents pacients i definir Patrons de Normalitat Regional (PNR)
|
|
|
Debora Gil, Jaume Garcia, Mariano Vazquez, Ruth Aris, & Guilleaume Houzeaux. (2008). "Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function " In 8th World Congress on Computational Mechanichs (WCCM8).
Abstract: Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
Keywords: Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance.
|
|
|
Debora Gil, Jaume Garcia, Manuel Vazquez, Ruth Aris, & Guillaume Houzeaux. (2008). "Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function " In 8th World Congress on Computational Mechanichs (WCCM8)/5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008). Venezia (Italia).
Abstract: Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality . In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp. We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment. The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted. The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
Keywords: Left Ventricle; Electromechanical Models; Image Processing; Magnetic Resonance.
|
|
|
Cristina Cañero, Petia Radeva, Oriol Pujol, Ricardo Toledo, Debora Gil, J. Saludes, et al. (1999). "Optimal Stent Implantation: Three-dimensional Evaluation of the Mutual Position of Stent and Vessel via Intracoronary Ecography " In Proceedings of International Conference on Computer in Cardiology (CIC´99).
Abstract: We present a new automatic technique to visualize and quantify the mutual position between the stent and the vessel wall by considering their three-dimensional reconstruction. Two deformable generalized cylinders adapt to the image features in all IVUS planes corresponding to the vessel wall and the stent in order to reconstruct the boundaries of the stent and the vessel in space. The image features that characterize the stent and the vessel wall are determined in terms of edge and ridge image detectors taking into account the gray level of the image pixels. We show that the 30 reconstruction by deformable cylinders is accurate and robust due to the spatial data coherence in the considered volumetric IVUS image. The main clinic utility of the stent and vessel reconstruction by deformable’ cylinders consists of its possibility to visualize and to assess the optimal stent introduction.
|
|
|
Carles Sanchez, Jorge Bernal, Debora Gil, & F. Javier Sanchez. (2013). "On-line lumen centre detection in gastrointestinal and respiratory endoscopy " In Klaus Miguel Angel and Drechsler Stefan and González Ballester Raj and Wesarg Cristina and Shekhar Marius George and Oyarzun Laura M. and L. Erdt (Ed.), Second International Workshop Clinical Image-Based Procedures (Vol. 8361, pp. 31–38). Springer International Publishing.
Abstract: We present in this paper a novel lumen centre detection for gastrointestinal and respiratory endoscopic images. The proposed method is based on the appearance and geometry of the lumen, which we defined as the darkest image region which centre is a hub of image gradients. Experimental results validated on the first public annotated gastro-respiratory database prove the reliability of the method for a wide range of images (with precision over 95 %).
Keywords: Lumen centre detection; Bronchoscopy; Colonoscopy
|
|
|
Aura Hernandez-Sabate, Debora Gil, & Petia Radeva. (2005). "On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging " In Proceeding of the 2005 conference on Artificial Intelligence Research and Development (pp. 67–74). Amsterdam, The Netherlands: IOS Press.
Abstract: IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability.
Keywords: classification; vessel border modelling; IVUS
|
|
|
Andrew Nolan, Daniel Serrano, Aura Hernandez-Sabate, Daniel Ponsa, & Antonio Lopez. (2013). "Obstacle mapping module for quadrotors on outdoor Search and Rescue operations " In International Micro Air Vehicle Conference and Flight Competition.
Abstract: Obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAV), due to their limited payload capacity to carry advanced sensors. Unlike larger vehicles, MAV can only carry light weight sensors, for instance a camera, which is our main assumption in this work. We explore passive monocular depth estimation and propose a novel method Position Aided Depth Estimation
(PADE). We analyse PADE performance and compare it against the extensively used Time To Collision (TTC). We evaluate the accuracy, robustness to noise and speed of three Optical Flow (OF) techniques, combined with both depth estimation methods. Our results show PADE is more accurate than TTC at depths between 0-12 meters and is less sensitive to noise. Our findings highlight the potential application of PADE for MAV to perform safe autonomous navigation in
unknown and unstructured environments.
Keywords: UAV
|
|