|
Debora Gil, & Guillermo Torres. (2020). "A multi-shape loss function with adaptive class balancing for the segmentation of lung structures " In 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery.
|
|
|
Debora Gil, Oriol Ramos Terrades, & Raquel Perez. (2020). "Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution " In Women in Geometry and Topology.
|
|
|
Esmitt Ramirez, Carles Sanchez, & Debora Gil. (2019). "Localizing Pulmonary Lesions Using Fuzzy Deep Learning " In 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 290–294).
Abstract: The usage of medical images is part of the clinical daily in several healthcare centers around the world. Particularly, Computer Tomography (CT) images are an important key in the early detection of suspicious lung lesions. The CT image exploration allows the detection of lung lesions before any invasive procedure (e.g. bronchoscopy, biopsy). The effective localization of lesions is performed using different image processing and computer vision techniques. Lately, the usage of deep learning models into medical imaging from detection to prediction shown that is a powerful tool for Computer-aided software. In this paper, we present an approach to localize pulmonary lung lesion using fuzzy deep learning. Our approach uses a simple convolutional neural network based using the LIDC-IDRI dataset. Each image is divided into patches associated a probability vector (fuzzy) according their belonging to anatomical structures on a CT. We showcase our approach as part of a full CAD system to exploration, planning, guiding and detection of pulmonary lesions.
|
|
|
Jose Yauri, Aura Hernandez-Sabate, Pau Folch, & Debora Gil. (2021). "Mental Workload Detection Based on EEG Analysis " In Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. (Vol. 339, pp. 268–277).
Abstract: The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
Keywords: Cognitive states; Mental workload; EEG analysis; Neural Networks.
|
|
|
Enric Marti, Debora Gil, & Carme Julia. (2005). "A PBL experience in the teaching of Computer Graphics " In EUROGRAPHICS Proceedings (Vol. 5, pp. 95–103).
Abstract: Project-Based Learning (PBL) is an educational strategy to improve student’s learning capability that, in recent years, has had a progressive acceptance in undergraduate studies. This methodology is based on solving a problem or project in a student working group. In this way, PBL focuses on learning the necessary tools to correctly find a solution to given problems. Since the learning initiative is transferred to the student, the PBL method promotes students own abilities. This allows a better assessment of the true workload that carries out the student in the subject. It follows that the methodology conforms to the guidelines of the Bologna document, which quantifies the student workload in a subject by means of the European credit transfer system (ECTS). PBL is currently applied in undergraduate studies needing strong practical training such as medicine, nursing or law sciences. Although this is also the case in engineering studies, amazingly, few experiences have been reported. In this paper we propose to use PBL in the educational organization of the Computer Graphics subjects in the Computer Science degree. Our PBL project focuses in the development of a C++ graphical environment based on the OpenGL libraries for visualization and handling of different graphical objects. The starting point is a basic skeleton that already includes lighting functions, perspective projection with mouse interaction to change the point of view and three predefined objects. Students have to complete this skeleton by adding their own functions to solve the project. A total number of 10 projects have been proposed and successfully solved. The exercises range from human face rendering to articulated objects, such as robot arms or puppets. In the present paper we extensively report the statement and educational objectives for two of the projects: solar system visualization and a chess game. We report our earlier educational experience based on the standard classroom theoretical, problem and practice sessions and the reasons that motivated searching for other learning methods. We have mainly chosen PBL because it improves the student learning initiative. We have applied the PBL educational model since the beginning of the second semester. The student’s feedback increases in his interest for the subject. We present a comparative study of the teachers’ and students’ workload between PBL and the classic teaching approach, which suggests that the workload increase in PBL is not as high as it seems.
Keywords: project-based learning; computer graphics education; Open GL; rendering techniques; computer animation techniques; Graphics packages; Hierarchy and geometric transformations; Animation; Color; shading; shadowing and texture; fractals; hidden line/surface removal; Problem Based Learning
|
|
|
Enric Marti, Carme Julia, & Debora Gil. (2007). "A PBL Experience in the Teaching of Computer Graphics " In XVII Congreso Español de Informàtica Gráfica (Vol. 25, pp. 95–103).
Abstract: Project-Based Learning (PBL) is an educational strategy to improve student’s learning capability that, in recent years, has had a progressive acceptance in undergraduate studies. This methodology is based on solving a problem or project in a student working group. In this way, PBL focuses on learning the necessary tools to correctly find a solution to given problems. Since the learning initiative is transferred to the student, the PBL method promotes students own abilities. This allows a better assessment of the true workload that carries out the student in the subject. It follows that the methodology conforms to the guidelines of the Bologna document, which quantifies the student workload in a subject by means of the European credit transfer system (ECTS). PBL is currently applied in undergraduate studies needing strong practical training such as medicine, nursing or law sciences. Although this is also the case in engineering studies, amazingly, few experiences have been reported. In this paper we propose to use PBL in the educational organization of the Computer Graphics subjects in the Computer Science degree. Our PBL project focuses in the development of a C++ graphical environment based on the OpenGL libraries for visualization and handling of different graphical objects. The starting point is a basic skeleton that already includes lighting functions, perspective projection with mouse interaction to change the point of view and three predefined objects. Students have to complete this skeleton by adding their own functions to solve the project. A total number of 10 projects have been proposed and successfully solved. The exercises range from human face rendering to articulated objects, such as robot arms or puppets. In the present paper we extensively report the statement and educational objectives for two of the projects: solar system visualization and a chess game. We report our earlier educational experience based on the standard classroom theoretical, problem and practice sessions and the reasons that motivated searching for other learning methods. We have mainly chosen PBL because it improves the student learning initiative. We have applied the PBL educational model since the beginning of the second semester. The student’s feedback increases in his interest for the subject. We present a comparative study of the teachers’ and students’ workload between PBL and the classic teaching approach, which suggests that the workload increase in PBL is not as high as it seems.
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2015). "A Novel Cochlear Reference Frame Based On The Laplace Equation " In 29th international Congress and Exhibition on Computer Assisted Radiology and Surgery (Vol. 10, pp. 1–312).
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2012). "A Complete Confidence Framework for Optical Flow " In Rita Cucchiara V. M. Andrea Fusiello (Ed.), 12th European Conference on Computer Vision – Workshops and Demonstrations (Vol. 7584, pp. 124–133). Florence, Italy, October 7-13, 2012: Springer-Verlag.
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.
Keywords: Optical flow, confidence measures, sparsification plots, error prediction plots
|
|
|
Gloria Fernandez-Esparrach, Jorge Bernal, Cristina Rodriguez de Miguel, Debora Gil, Fernando Vilariño, Henry Cordova, et al. (2016)." Utilidad de la visión por computador para la localización de pólipos pequeños y planos" In XIX Reunión Nacional de la Asociación Española de Gastroenterología, Gastroenterology Hepatology (Vol. 39, 94).
|
|
|
Carles Sanchez, Jorge Bernal, F. Javier Sanchez, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2015)." Towards On-line Quantification of Tracheal Stenosis from Videobronchoscopy" In 6th International Conference on Information Processing in Computer-Assisted Interventions IPCAI2015 (Vol. 10, pp. 935–945).
Abstract: PURPOSE:
Lack of objective measurement of tracheal obstruction degree has a negative impact on the chosen treatment prone to lead to unnecessary repeated explorations and other scanners. Accurate computation of tracheal stenosis in videobronchoscopy would constitute a breakthrough for this noninvasive technique and a reduction in operation cost for the public health service.
METHODS:
Stenosis calculation is based on the comparison of the region delimited by the lumen in an obstructed frame and the region delimited by the first visible ring in a healthy frame. We propose a parametric strategy for the extraction of lumen and tracheal ring regions based on models of their geometry and appearance that guide a deformable model. To ensure a systematic applicability, we present a statistical framework to choose optimal parametric values and a strategy to choose the frames that minimize the impact of scope optical distortion.
RESULTS:
Our method has been tested in 40 cases covering different stenosed tracheas. Experiments report a non- clinically relevant [Formula: see text] of discrepancy in the calculated stenotic area and a computational time allowing online implementation in the operating room.
CONCLUSIONS:
Our methodology allows reliable measurements of airway narrowing in the operating room. To fully assess its clinical impact, a prospective clinical trial should be done.
|
|