|
Carles Sanchez, Antonio Esteban Lansaque, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2017). "Towards a Videobronchoscopy Localization System from Airway Centre Tracking " In 12th International Conference on Computer Vision Theory and Applications (pp. 352–359).
Abstract: Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a
feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
Keywords: Video-bronchoscopy; Lung cancer diagnosis; Airway lumen detection; Region tracking; Guided bronchoscopy navigation
|
|
|
Carles Sanchez, Debora Gil, Jorge Bernal, F. Javier Sanchez, Marta Diez-Ferrer, & Antoni Rosell. (2016). "Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches " In 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops (Vol. 9401, pp. 62–70).
Abstract: Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface.
Keywords: Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy
|
|
|
Carles Sanchez, Debora Gil, T. Gache, N. Koufos, Marta Diez-Ferrer, & Antoni Rosell. (2016). "SENSA: a System for Endoscopic Stenosis Assessment " In 28th Conference of the international Society for Medical Innovation and Technology.
Abstract: Documenting the severity of a static or dynamic Central Airway Obstruction (CAO) is crucial to establish proper diagnosis and treatment, predict possible treatment effects and better follow-up the patients. The subjective visual evaluation of a stenosis during video-bronchoscopy still remains the most common way to assess a CAO in spite of a consensus among experts for a need to standardize all calculations [1].
The Computer Vision Center in cooperation with the «Hospital de Bellvitge», has developed a System for Endoscopic Stenosis Assessment (SENSA), which computes CAO directly by analyzing standard bronchoscopic data without the need of using other imaging tecnologies.
|
|
|
Carles Sanchez, Miguel Viñas, Coen Antens, Agnes Borras, & Debora Gil. (2018). "Back to Front Architecture for Diagnosis as a Service " In 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 343–346).
Abstract: Software as a Service (SaaS) is a cloud computing model in which a provider hosts applications in a server that customers use via internet. Since SaaS does not require to install applications on customers' own computers, it allows the use by multiple users of highly specialized software without extra expenses for hardware acquisition or licensing. A SaaS tailored for clinical needs not only would alleviate licensing costs, but also would facilitate easy access to new methods for diagnosis assistance. This paper presents a SaaS client-server architecture for Diagnosis as a Service (DaaS). The server is based on docker technology in order to allow execution of softwares implemented in different languages with the highest portability and scalability. The client is a content management system allowing the design of websites with multimedia content and interactive visualization of results allowing user editing. We explain a usage case that uses our DaaS as crowdsourcing platform in a multicentric pilot study carried out to evaluate the clinical benefits of a software for assessment of central airway obstruction.
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2013). "Volumetric Anatomical Parameterization and Meshing for Inter-patient Liver Coordinate System Deffinition " In 16th International Conference on Medical Image Computing and Computer Assisted Intervention.
|
|
|
Sergio Vera, Debora Gil, & Miguel Angel Gonzalez Ballester. (2014). "Anatomical parameterization for volumetric meshing of the liver " In SPIE – Medical Imaging (Vol. 9036).
Abstract: A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values
at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites
of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the
volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient’s liver, and allows comparing livers from several patients in a common framework of reference.
Keywords: Coordinate System; Anatomy Modeling; Parameterization
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2015). "A Novel Cochlear Reference Frame Based On The Laplace Equation " In 29th international Congress and Exhibition on Computer Assisted Radiology and Surgery (Vol. 10, pp. 1–312).
|
|
|
Gloria Fernandez Esparrach, Jorge Bernal, Cristina Rodriguez de Miguel, Debora Gil, Fernando Vilariño, Henry Cordova, et al. (2016)." Utilidad de la visión por computador para la localización de pólipos pequeños y planos" In XIX Reunión Nacional de la Asociación Española de Gastroenterología, Gastroenterology Hepatology (Vol. 39, 94).
|
|
|
Joel Barajas, Jaume Garcia, Francesc Carreras, Sandra Pujades, & Petia Radeva. (2005). "Angle Images Using Gabor Filters in Cardiac Tagged MRI " In Proceeding of the 2005 conference on Artificial Intelligence Research and Development (pp. 107–114). Amsterdam, The Netherlands: IOS Press.
Abstract: Tagged Magnetic Resonance Imaging (MRI) is a non-invasive technique used to examine cardiac deformation in vivo. An Angle Image is a representation of a Tagged MRI which recovers the relative position of the tissue respect to the distorted tags. Thus cardiac deformation can be estimated. This paper describes a new approach to generate Angle Images using a bank of Gabor filters in short axis cardiac Tagged MRI. Our method improves the Angle Images obtained by global techniques, like HARP, with a local frequency analysis. We propose to use the phase response of a combination of a Gabor filters bank, and use it to find a more precise deformation of the left ventricle. We demonstrate the accuracy of our method over HARP by several experimental results.
Keywords: Angle Images, Gabor Filters, Harp, Tagged Mri
|
|
|
Aura Hernandez-Sabate, Lluis Albarracin, Daniel Calvo, & Nuria Gorgorio. (2016). "EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game " In 5th International Conference Games and Learning Alliance (Vol. 10056, pp. 50–59).
Abstract: Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.
Keywords: Simulation environment; Automated Driving; Driver-Vehicle interaction
|
|