|
Petia Radeva, & Enric Marti. (1995). "Facial Features Segmentation by Model-Based Snakes. ".
|
|
|
Jaume Garcia. (2002)." Propagacio de fronts per a la segmentacio en imatges IVUS" .
|
|
|
Albert Andaluz. (2009). "LV Contour Segmentation in TMR images using Semantic Description of Tissue and Prior Knowledge Correction " (Vol. 142). Master's thesis, , Bellaterra 08193, Barcelona, Spain.
Abstract: The Diagnosis of Left Ventricle (LV) pathologies is related to regional wall motion analysis. Health indicator scores such as the rotation and the torsion are useful for the diagnose of the Left Ventricle (LV) function. However, this requires proper identification of LV segments. On one hand, manual segmentation is robust, but it is slow and requires medical expertise. On the other hand, the tag pattern in Tagged Magnetic Resonance (TMR) sequences is a problem for the automatic segmentation of the LV boundaries. Consequently, we propose a method based in the classical formulation of parametric Snakes, combined with Active Shape models. Our semantic definition of the LV is tagged tissue that experiences motion in the systolic cycle. This defines two energy potentials for the Snake convergence. Additionally, the mean shape corrects excessive deviation from the anatomical shape. We have validated our approach in 15 healthy volunteers and two short axis cuts. In this way, we have compared the automatic segmentations to manual shapes outlined by medical experts. Also, we have explored the accuracy of clinical scores computed using automatic contours. The results show minor divergence in the approximation and the manual segmentations as well as robust computation of clinical scores in all cases. From this we conclude that the proposed method is a promising support tool for clinical analysis.
Keywords: Active Contour Models; Snakes; Active Shape Models; Deformable Templates; Left Ventricle Segmentation; Generalized Orthogonal Procrustes Analysis; Harmonic Phase Flow; Principal Component Analysis; Tagged Magnetic Resonance
|
|
|
Oriol Rodriguez-Leor, J. Mauri, Eduard Fernandez-Nofrerias, M. Gomez, Antonio Tovar, L. Cano, et al. (2002)." Ecografia Intracoronaria: Segmentacio Automatica de area de la llum" . Revista Societat Catalana de Cardiologia, 4(4), 42.
|
|
|
Debora Gil, & Petia Radeva. (2004). "A Regularized Curvature Flow Designed for a Selective Shape Restoration " . IEEE Transactions on Image Processing, 13, 1444–1458.
Abstract: Among all filtering techniques, those based exclu- sively on image level sets (geometric flows) have proven to be the less sensitive to the nature of noise and the most contrast preserving. A common feature to existent curvature flows is that they penalize high curvature, regardless of the curve regularity. This constitutes a major drawback since curvature extreme values are standard descriptors of the contour geometry. We argue that an operator designed with shape recovery purposes should include a term penalizing irregularity in the curvature rather than its magnitude. To this purpose, we present a novel geometric flow that includes a function that measures the degree of local irregularity present in the curve. A main advantage is that it achieves non-trivial steady states representing a smooth model of level curves in a noisy image. Performance of our approach is compared to classical filtering techniques in terms of quality in the restored image/shape and asymptotic behavior. We empirically prove that our approach is the technique that achieves the best compromise between image quality and evolution stabilization.
Keywords: Geometric flows, nonlinear filtering, shape recovery.
|
|
|
Oriol Rodriguez-Leor, J. Mauri, Eduard Fernandez-Nofrerias, Antonio Tovar, Vicente del Valle, Aura Hernandez-Sabate, et al. (2004)." Utilizacion de la estructura de los campos vectoriales para la deteccion de la Adventicia en imagenes de Ecografia Intracoronaria" . Revista Española de Cardiología, 57(2), 100.
|
|
|
Joel Barajas, Jaume Garcia, Francesc Carreras, Sandra Pujades, & Petia Radeva. (2005). "Angle Images Using Gabor Filters in Cardiac Tagged MRI " In Proceeding of the 2005 conference on Artificial Intelligence Research and Development (pp. 107–114). Amsterdam, The Netherlands: IOS Press.
Abstract: Tagged Magnetic Resonance Imaging (MRI) is a non-invasive technique used to examine cardiac deformation in vivo. An Angle Image is a representation of a Tagged MRI which recovers the relative position of the tissue respect to the distorted tags. Thus cardiac deformation can be estimated. This paper describes a new approach to generate Angle Images using a bank of Gabor filters in short axis cardiac Tagged MRI. Our method improves the Angle Images obtained by global techniques, like HARP, with a local frequency analysis. We propose to use the phase response of a combination of a Gabor filters bank, and use it to find a more precise deformation of the left ventricle. We demonstrate the accuracy of our method over HARP by several experimental results.
Keywords: Angle Images, Gabor Filters, Harp, Tagged Mri
|
|
|
Jaume Garcia, Joel Barajas, Francesc Carreras, Sandra Pujades, & Petia Radeva. (2005). "An intuitive validation technique to compare local versus global tagged MRI analysis " In Computers In Cardiology (Vol. 32, 29–32).
Abstract: Myocardium appears as a uniform tissue that seen in convectional Magnetic Resonance Images (MRI) shows just the contractile part of its movement. MR Tagging is a unique imaging technique that prints a grid over the tissue which moves according to the underlying movement of the myocardium revealing the true deformation of the cardiac muscle. Optical flow techniques based on spectral information estimate tissue displacement by analyzing information encoded in the phase maps which can be obtained using, local (Gabor) and global (HARP) methods. In this paper we compare both in synthetic and real Tagged MR sequences. We conclude that local method is slightly more accurate than the global one. On the other hand, global method is more efficient as it is much faster and less parameters have to be taken into account
|
|
|
Enric Marti, Debora Gil, & Carme Julia. (2006)." Una experiencia de PBL en la docencia de la asignatura de Graficos por Computador en Ingenieria Informatica" (Vol. 1).
|
|
|
Debora Gil, Jaume Garcia, Mariano Vazquez, Ruth Aris, & Guilleaume Houzeaux. (2008). "Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function " In 8th World Congress on Computational Mechanichs (WCCM8).
Abstract: Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
Keywords: Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance.
|
|