toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil edit  doi
openurl 
  Title Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals Type Journal Article
  Year 2022 Publication Applied Sciences Abbreviated Journal APPLSCI  
  Volume 12 Issue 5 Pages 2298  
  Keywords Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion  
  Abstract The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.  
  Address February 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS; 600.139; 600.145; 600.118 Approved no  
  Call Number Admin @ si @ HYF2022 Serial (down) 3720  
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; B. Cardenas; G. Fonseka; E. Anton; Alvaro Pascual; Richard Frodsham; Zaida Sarrate edit  doi
openurl 
  Title Time to match; when do homologous chromosomes become closer? Type Journal Article
  Year 2022 Publication Chromosoma Abbreviated Journal CHRO  
  Volume Issue Pages  
  Keywords  
  Abstract In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a threedimensional fuorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.  
  Address August, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 601.139; 600.145; 600.096 Approved no  
  Call Number Admin @ si @ SBG2022 Serial (down) 3719  
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil edit   pdf
doi  openurl
  Title A Flexible Outlier Detector Based on a Topology Given by Graph Communities Type Journal Article
  Year 2022 Publication Big Data Research Abbreviated Journal BDR  
  Volume 29 Issue Pages 100332  
  Keywords Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors  
  Abstract Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings.
 
  Address August 28, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 Approved no  
  Call Number Admin @ si @ RBG2022a Serial (down) 3718  
Permanent link to this record
 

 
Author Idoia Ruiz edit  isbn
openurl 
  Title Deep Metric Learning for re-identification, tracking and hierarchical novelty detection Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Metric learning refers to the problem in machine learning of learning a distance or similarity measurement to compare data. In particular, deep metric learning involves learning a representation, also referred to as embedding, such that in the embedding space data samples can be compared based on the distance, directly providing a similarity measure. This step is necessary to perform several tasks in computer vision. It allows to perform the classification of images, regions or pixels, re-identification, out-of-distribution detection, object tracking in image sequences and any other task that requires computing a similarity score for their solution. This thesis addresses three specific problems that share this common requirement. The first one is person re-identification. Essentially, it is an image retrieval task that aims at finding instances of the same person according to a similarity measure. We first compare in terms of accuracy and efficiency, classical metric learning to basic deep learning based methods for this problem. In this context, we also study network distillation as a strategy to optimize the trade-off between accuracy and speed at inference time. The second problem we contribute to is novelty detection in image classification. It consists in detecting samples of novel classes, i.e. never seen during training. However, standard novelty detection does not provide any information about the novel samples besides they are unknown. Aiming at more informative outputs, we take advantage from the hierarchical taxonomies that are intrinsic to the classes. We propose a metric learning based approach that leverages the hierarchical relationships among classes during training, being able to predict the parent class for a novel sample in such hierarchical taxonomy. Our third contribution is in multi-object tracking and segmentation. This joint task comprises classification, detection, instance segmentation and tracking. Tracking can be formulated as a retrieval problem to be addressed with metric learning approaches. We tackle the existing difficulty in academic research that is the lack of annotated benchmarks for this task. To this matter, we introduce the problem of weakly supervised multi-object tracking and segmentation, facing the challenge of not having available ground truth for instance segmentation. We propose a synergistic training strategy that benefits from the knowledge of the supervised tasks that are being learnt simultaneously.  
  Address July, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Joan Serrat  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-4-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rui2022 Serial (down) 3717  
Permanent link to this record
 

 
Author Aitor Alvarez-Gila edit  openurl
  Title Self-supervised learning for image-to-image translation in the small data regime Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords Computer vision; Neural networks; Self-supervised learning; Image-to-image mapping; Probabilistic programming  
  Abstract The mass irruption of Deep Convolutional Neural Networks (CNNs) in computer vision since 2012 led to a dominance of the image understanding paradigm consisting in an end-to-end fully supervised learning workflow over large-scale annotated datasets. This approach proved to be extremely useful at solving a myriad of classic and new computer vision tasks with unprecedented performance —often, surpassing that of humans—, at the expense of vast amounts of human-labeled data, extensive computational resources and the disposal of all of our prior knowledge on the task at hand. Even though simple transfer learning methods, such as fine-tuning, have achieved remarkable impact, their success when the amount of labeled data in the target domain is small is limited. Furthermore, the non-static nature of data generation sources will often derive in data distribution shifts that degrade the performance of deployed models. As a consequence, there is a growing demand for methods that can exploit elements of prior knowledge and sources of information other than the manually generated ground truth annotations of the images during the network training process, so that they can adapt to new domains that constitute, if not a small data regime, at least a small labeled data regime. This thesis targets such few or no labeled data scenario in three distinct image-to-image mapping learning problems. It contributes with various approaches that leverage our previous knowledge of different elements of the image formation process: We first present a data-efficient framework for both defocus and motion blur detection, based on a model able to produce realistic synthetic local degradations. The framework comprises a self-supervised, a weakly-supervised and a semi-supervised instantiation, depending on the absence or availability and the nature of human annotations, and outperforms fully-supervised counterparts in a variety of settings. Our knowledge on color image formation is then used to gather input and target ground truth image pairs for the RGB to hyperspectral image reconstruction task. We make use of a CNN to tackle this problem, which, for the first time, allows us to exploit spatial context and achieve state-of-the-art results given a limited hyperspectral image set. In our last contribution to the subfield of data-efficient image-to-image transformation problems, we present the novel semi-supervised task of zero-pair cross-view semantic segmentation: we consider the case of relocation of the camera in an end-to-end trained and deployed monocular, fixed-view semantic segmentation system often found in industry. Under the assumption that we are allowed to obtain an additional set of synchronized but unlabeled image pairs of new scenes from both original and new camera poses, we present ZPCVNet, a model and training procedure that enables the production of dense semantic predictions in either source or target views at inference time. The lack of existing suitable public datasets to develop this approach led us to the creation of MVMO, a large-scale Multi-View, Multi-Object path-traced dataset with per-view semantic segmentation annotations. We expect MVMO to propel future research in the exciting under-developed fields of cross-view and multi-view semantic segmentation. Last, in a piece of applied research of direct application in the context of process monitoring of an Electric Arc Furnace (EAF) in a steelmaking plant, we also consider the problem of simultaneously estimating the temperature and spectral emissivity of distant hot emissive samples. To that end, we design our own capturing device, which integrates three point spectrometers covering a wide range of the Ultra-Violet, visible, and Infra-Red spectra and is capable of registering the radiance signal incoming from an 8cm diameter spot located up to 20m away. We then define a physically accurate radiative transfer model that comprises the effects of atmospheric absorbance, of the optical system transfer function, and of the sample temperature and spectral emissivity themselves. We solve this inverse problem without the need for annotated data using a probabilistic programming-based Bayesian approach, which yields full posterior distribution estimates of the involved variables that are consistent with laboratory-grade measurements.  
  Address Julu, 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Joost Van de Weijer; Estibaliz Garrote  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Alv2022 Serial (down) 3716  
Permanent link to this record
 

 
Author Kai Wang edit  isbn
openurl 
  Title Continual learning for hierarchical classification, few-shot recognition, and multi-modal learning Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep learning has drastically changed computer vision in the past decades and achieved great success in many applications, such as image classification, retrieval, detection, and segmentation thanks to the emergence of neural networks. Typically, for most applications, these networks are presented with examples from all tasks they are expected to perform. However, for many applications, this is not a realistic
scenario, and an algorithm is required to learn tasks sequentially. Continual learning proposes theory and methods for this scenario.
The main challenge for continual learning systems is called catastrophic forgetting and refers to a significant drop in performance on previous tasks. To tackle this problem, three main branches of methods have been explored to alleviate the forgetting in continual learning. They are regularization-based methods, rehearsalbased methods, and parameter isolation-based methods. However, most of them are focused on image classification tasks. Continual learning of many computer vision fields has still not been well-explored. Thus, in this thesis, we extend the continual learning knowledge to meta learning, we propose a method for the incremental learning of hierarchical relations for image classification, we explore image recognition in online continual learning, and study continual learning for cross-modal learning.
In this thesis, we explore the usage of image rehearsal when addressing the incremental meta learning problem. Observing that existingmethods fail to improve performance with saved exemplars, we propose to mix exemplars with current task data and episode-level distillation to overcome forgetting in incremental meta learning. Next, we study a more realistic image classification scenario where each class has multiple granularity levels. Only one label is present at any time, which requires the model to infer if the provided label has a hierarchical relation with any already known label. In experiments, we show that the estimated hierarchy information can be beneficial in both the training and inference stage.
For the online continual learning setting, we investigate the usage of intermediate feature replay. In this case, the training samples are only observed by the model only one time. Here we fix thememory buffer for feature replay and compare the effectiveness of saving features from different layers. Finally, we investigate multi-modal continual learning, where an image encoder is cooperating with a semantic branch. We consider the continual learning of both zero-shot learning and cross-modal retrieval problems.
 
  Address July, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Luis Herranz;Joost Van de Weijer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-2-4 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Wan2022 Serial (down) 3714  
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani edit  isbn
openurl 
  Title Towards Efficient and Robust Convolutional Neural Networks for Single Image Super-Resolution Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Single image super-resolution (SISR) is an important task in image processing which aims to enhance the resolution of imaging systems. Recently, SISR has witnessed great strides with the rapid development of deep learning. Recent advances in SISR are mostly devoted to designing deeper and wider networks to enhance their representation learning capacity. However, as the depth of networks increases, deep learning-based methods are faced with the challenge of computational complexity in practice. Moreover, most existing methods rarely leverage the intermediate features and also do not discriminate the computation of features by their frequencial components, thereby achieving relatively low performance. Aside from the aforementioned problems, another desired ability is to upsample images to arbitrary scales using a single model. Most current SISR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements. In this thesis, we address the aforementioned issues and propose solutions to them: i) We present a novel frequency-based enhancement block which treats different frequencies in a heterogeneous way and also models inter-channel dependencies, which consequently enrich the output feature. Thus it helps the network generate more discriminative representations by explicitly recovering finer details. ii) We introduce OverNet which contains two main parts: a lightweight feature extractor that follows a novel recursive framework of skip and dense connections to reduce low-level feature degradation, and an overscaling module that generates an accurate SR image by internally constructing an overscaled intermediate representation of the output features. Then, to solve the problem of reconstruction at arbitrary scale factors, we introduce a novel multi-scale loss, that allows the simultaneous training of all scale factors using a single model. iii) We propose a directional variance attention network which leverages a novel attention mechanism to enhance features in different channels and spatial regions. Moreover, we introduce a novel procedure for using attention mechanisms together with residual blocks to facilitate the preservation of finer details. Finally, we demonstrate that our approaches achieve considerably better performance than previous state-of-the-art methods, in terms of both quantitative and visual quality.  
  Address April, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Jordi Gonzalez;Xavier Roca;Pau Rodriguez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-1-7 Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Beh2022 Serial (down) 3713  
Permanent link to this record
 

 
Author Akhil Gurram edit  isbn
openurl 
  Title Monocular Depth Estimation for Autonomous Driving Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract 3D geometric information is essential for on-board perception in autonomous driving and driver assistance. Autonomous vehicles (AVs) are equipped with calibrated sensor suites. As part of these suites, we can find LiDARs, which are expensive active sensors in charge of providing the 3D geometric information. Depending on the operational conditions for the AV, calibrated stereo rigs may be also sufficient for obtaining 3D geometric information, being these rigs less expensive and easier to install than LiDARs. However, ensuring a proper maintenance and calibration of these types of sensors is not trivial. Accordingly, there is an increasing interest on performing monocular depth estimation (MDE) to obtain 3D geometric information on-board. MDE is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Moreover, a set of single cameras with MDE capabilities would still be a cheap solution for on-board perception, relatively easy to integrate and maintain in an AV.
Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Accordingly, the overall goal of this PhD is to study methods for improving CNN-based MDE accuracy under different training settings. More specifically, this PhD addresses different research questions that are described below. When we started to work in this PhD, state-of-theart methods for MDE were already based on CNNs. In fact, a promising line of work consisted in using image-based semantic supervision (i.e., pixel-level class labels) while training CNNs for MDE using LiDAR-based supervision (i.e., depth). It was common practice to assume that the same raw training data are complemented by both types of supervision, i.e., with depth and semantic labels. However, in practice, it was more common to find heterogeneous datasets with either only depth supervision or only semantic supervision. Therefore, our first work was to research if we could train CNNs for MDE by leveraging depth and semantic information from heterogeneous datasets. We show that this is indeed possible, and we surpassed the state-of-the-art results on MDE at the time we did this research. To achieve our results, we proposed a particular CNN architecture and a new training protocol.
After this research, it was clear that the upper-bound setting to train CNN-based MDE models consists in using LiDAR data as supervision. However, it would be cheaper and more scalable if we would be able to train such models from monocular sequences. Obviously, this is far more challenging, but worth to research. Training MDE models using monocular sequences is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. To alleviate these problems, we perform MDE by virtual-world supervision and real-world SfM self-supervision. We call our proposalMonoDEVSNet. We compensate the SfM self-supervision limitations by leveraging
virtual-world images with accurate semantic and depth supervision, as well as addressing the virtual-to-real domain gap. MonoDEVSNet outperformed previous MDE CNNs trained on monocular and even stereo sequences. We have publicly released MonoDEVSNet at <https://github.com/HMRC-AEL/MonoDEVSNet>.
Finally, since MDE is performed to produce 3D information for being used in downstream tasks related to on-board perception. We also address the question of whether the standard metrics for MDE assessment are a good indicator for future MDE-based driving-related perception tasks. By using 3D object detection on point clouds as proxy of on-board perception, we conclude that, indeed, MDE evaluation metrics give rise to a ranking of methods which reflects relatively well the 3D object detection results we may expect.
 
  Address March, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Antonio Lopez;Onay Urfalioglu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-0-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Gur2022 Serial (down) 3712  
Permanent link to this record
 

 
Author Jon Almazan; Bojana Gajic; Naila Murray; Diane Larlus edit  doi
openurl 
  Title Re-ID done right: towards good practices for person re-identification Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.  
  Address January 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Serial (down) 3711  
Permanent link to this record
 

 
Author Bojana Gajic; Eduard Vazquez; Ramon Baldrich edit  url
openurl 
  Title Evaluation of Deep Image Descriptors for Texture Retrieval Type Conference Article
  Year 2017 Publication Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017) Abbreviated Journal  
  Volume Issue Pages 251-257  
  Keywords Texture Representation; Texture Retrieval; Convolutional Neural Networks; Psychophysical Evaluation  
  Abstract The increasing complexity learnt in the layers of a Convolutional Neural Network has proven to be of great help for the task of classification. The topic has received great attention in recently published literature.
Nonetheless, just a handful of works study low-level representations, commonly associated with lower layers. In this paper, we explore recent findings which conclude, counterintuitively, the last layer of the VGG convolutional network is the best to describe a low-level property such as texture. To shed some light on this issue, we are proposing a psychophysical experiment to evaluate the adequacy of different layers of the VGG network for texture retrieval. Results obtained suggest that, whereas the last convolutional layer is a good choice for a specific task of classification, it might not be the best choice as a texture descriptor, showing a very poor performance on texture retrieval. Intermediate layers show the best performance, showing a good combination of basic filters, as in the primary visual cortex, and also a degree of higher level information to describe more complex textures.
 
  Address Porto, Portugal; 27 February – 1 March 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes CIC; 600.087 Approved no  
  Call Number Admin @ si @ Serial (down) 3710  
Permanent link to this record
 

 
Author Bojana Gajic; Ramon Baldrich edit  doi
openurl 
  Title Cross-domain fashion image retrieval Type Conference Article
  Year 2018 Publication CVPR 2018 Workshop on Women in Computer Vision (WiCV 2018, 4th Edition) Abbreviated Journal  
  Volume Issue Pages 19500-19502  
  Keywords  
  Abstract Cross domain image retrieval is a challenging task that implies matching images from one domain to their pairs from another domain. In this paper we focus on fashion image retrieval, which involves matching an image of a fashion item taken by users, to the images of the same item taken in controlled condition, usually by professional photographer. When facing this problem, we have different products
in train and test time, and we use triplet loss to train the network. We stress the importance of proper training of simple architecture, as well as adapting general models to the specific task.
 
  Address Salt Lake City, USA; 22 June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes CIC; 600.087 Approved no  
  Call Number Admin @ si @ Serial (down) 3709  
Permanent link to this record
 

 
Author Gemma Rotger; Francesc Moreno-Noguer; Felipe Lumbreras; Antonio Agudo edit  url
openurl 
  Title Detailed 3D face reconstruction from a single RGB image Type Journal
  Year 2019 Publication Journal of WSCG Abbreviated Journal JWSCG  
  Volume 27 Issue 2 Pages 103-112  
  Keywords 3D Wrinkle Reconstruction; Face Analysis, Optimization.  
  Abstract This paper introduces a method to obtain a detailed 3D reconstruction of facial skin from a single RGB image.
To this end, we propose the exclusive use of an input image without requiring any information about the observed material nor training data to model the wrinkle properties. They are detected and characterized directly from the image via a simple and effective parametric model, determining several features such as location, orientation, width, and height. With these ingredients, we propose to minimize a photometric error to retrieve the final detailed 3D map, which is initialized by current techniques based on deep learning. In contrast with other approaches, we only require estimating a depth parameter, making our approach fast and intuitive. Extensive experimental evaluation is presented in a wide variety of synthetic and real images, including different skin properties and facial
expressions. In all cases, our method outperforms the current approaches regarding 3D reconstruction accuracy, providing striking results for both large and fine wrinkles.
 
  Address 2019/11  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ Serial (down) 3708  
Permanent link to this record
 

 
Author Gemma Rotger; Francesc Moreno-Noguer; Felipe Lumbreras; Antonio Agudo edit  doi
openurl 
  Title Single view facial hair 3D reconstruction Type Conference Article
  Year 2019 Publication 9th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 11867 Issue Pages 423-436  
  Keywords 3D Vision; Shape Reconstruction; Facial Hair Modeling  
  Abstract n this work, we introduce a novel energy-based framework that addresses the challenging problem of 3D reconstruction of facial hair from a single RGB image. To this end, we identify hair pixels over the image via texture analysis and then determine individual hair fibers that are modeled by means of a parametric hair model based on 3D helixes. We propose to minimize an energy composed of several terms, in order to adapt the hair parameters that better fit the image detections. The final hairs respond to the resulting fibers after a post-processing step where we encourage further realism. The resulting approach generates realistic facial hair fibers from solely an RGB image without assuming any training data nor user interaction. We provide an experimental evaluation on real-world pictures where several facial hair styles and image conditions are observed, showing consistent results and establishing a comparison with respect to competing approaches.  
  Address Madrid; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IbPRIA  
  Notes ADAS; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ Serial (down) 3707  
Permanent link to this record
 

 
Author Reuben Dorent; Aaron Kujawa; Marina Ivory; Spyridon Bakas; Nikola Rieke; Samuel Joutard; Ben Glocker; Jorge Cardoso; Marc Modat; Kayhan Batmanghelich; Arseniy Belkov; Maria Baldeon Calisto; Jae Won Choi; Benoit M. Dawant; Hexin Dong; Sergio Escalera; Yubo Fan; Lasse Hansen; Mattias P. Heinrich; Smriti Joshi; Victoriya Kashtanova; Hyeon Gyu Kim; Satoshi Kondo; Christian N. Kruse; Susana K. Lai-Yuen; Hao Li; Han Liu; Buntheng Ly; Ipek Oguz; Hyungseob Shin; Boris Shirokikh; Zixian Su; Guotai Wang; Jianghao Wu; Yanwu Xu; Kai Yao; Li Zhang; Sebastien Ourselin, edit   pdf
url  doi
openurl 
  Title CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation Type Journal Article
  Year 2023 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 83 Issue Pages 102628  
  Keywords Domain Adaptation; Segmen tation; Vestibular Schwnannoma  
  Abstract Domain Adaptation (DA) has recently raised strong interests in the medical imaging community. While a large variety of DA techniques has been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA. The challenge's goal is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are performed using contrast-enhanced T1 (ceT1) MRI. However, there is growing interest in using non-contrast sequences such as high-resolution T2 (hrT2) MRI. Therefore, we created an unsupervised cross-modality segmentation benchmark. The training set provides annotated ceT1 (N=105) and unpaired non-annotated hrT2 (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137). A total of 16 teams submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice – VS:88.4%; Cochleas:85.7%) and close to full supervision (median Dice – VS:92.5%; Cochleas:87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ DKI2023 Serial (down) 3706  
Permanent link to this record
 

 
Author Jose Luis Gomez; Gabriel Villalonga; Antonio Lopez edit  url
openurl 
  Title Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models Type Journal Article
  Year 2023 Publication Sensors – Special Issue on “Machine Learning for Autonomous Driving Perception and Prediction” Abbreviated Journal SENS  
  Volume 23 Issue 2 Pages 621  
  Keywords Domain adaptation; semi-supervised learning; Semantic segmentation; Autonomous driving  
  Abstract Semantic image segmentation is a central and challenging task in autonomous driving, addressed by training deep models. Since this training draws to a curse of human-based image labeling, using synthetic images with automatically generated labels together with unlabeled real-world images is a promising alternative. This implies to address an unsupervised domain adaptation (UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of semantic
segmentation models. It consists of a self-training stage, which provides two domain-adapted models, and a model collaboration loop for the mutual improvement of these two models. These models are then used to provide the final semantic segmentation labels (pseudo-labels) for the real-world images. The overall
procedure treats the deep models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is required, nor explicit feature alignment. We test our proposal on standard synthetic and real-world datasets for on-board semantic segmentation. Our
procedure shows improvements ranging from ∼13 to ∼26 mIoU points over baselines, so establishing new state-of-the-art results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; no proj Approved no  
  Call Number Admin @ si @ GVL2023 Serial (down) 3705  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: