toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author Oriol Pujol; Petia Radeva edit  doi
  Title Texture Segmentation by Statistical Deformable Models Type Journal
  Year 2004 Publication International Journal of Image and Graphics Abbreviated Journal IJIG  
  Volume 4 Issue 3 Pages 433-452  
  Keywords Texture segmentation, parametric active contours, statistic snakes  
  Abstract Deformable models have received much popularity due to their ability to include high-level knowledge on the application domain into low-level image processing. Still, most proposed active contour models do not sufficiently profit from the application information and they are too generalized, leading to non-optimal final results of segmentation, tracking or 3D reconstruction processes. In this paper we propose a new deformable model defined in a statistical framework to segment objects of natural scenes. We perform a supervised learning of local appearance of the textured objects and construct a feature space using a set of co-occurrence matrix measures. Linear Discriminant Analysis allows us to obtain an optimal reduced feature space where a mixture model is applied to construct a likelihood map. Instead of using a heuristic potential field, our active model is deformed on a regularized version of the likelihood map in order to segment objects characterized by the same texture pattern. Different tests on synthetic images, natural scene and medical images show the advantages of our statistic deformable model.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MILAB;HuPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ PuR2004a Serial 505  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: