|   | 
Author Oriol Pujol; Petia Radeva
Title Texture Segmentation by Statistical Deformable Models Type Journal
Year 2004 Publication International Journal of Image and Graphics Abbreviated Journal IJIG
Volume 4 Issue 3 Pages 433-452
Keywords Texture segmentation, parametric active contours, statistic snakes
Abstract Deformable models have received much popularity due to their ability to include high-level knowledge on the application domain into low-level image processing. Still, most proposed active contour models do not sufficiently profit from the application information and they are too generalized, leading to non-optimal final results of segmentation, tracking or 3D reconstruction processes. In this paper we propose a new deformable model defined in a statistical framework to segment objects of natural scenes. We perform a supervised learning of local appearance of the textured objects and construct a feature space using a set of co-occurrence matrix measures. Linear Discriminant Analysis allows us to obtain an optimal reduced feature space where a mixture model is applied to construct a likelihood map. Instead of using a heuristic potential field, our active model is deformed on a regularized version of the likelihood map in order to segment objects characterized by the same texture pattern. Different tests on synthetic images, natural scene and medical images show the advantages of our statistic deformable model.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference (up)
Notes MILAB;HuPBA Approved no
Call Number BCNPCL @ bcnpcl @ PuR2004a Serial 505
Permanent link to this record