toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title A Regularized Curvature Flow Designed for a Selective Shape Restoration Type Journal Article
  Year 2004 Publication IEEE Transactions on Image Processing Abbreviated Journal  
  Volume 13 Issue Pages 1444–1458  
  Keywords Geometric flows, nonlinear filtering, shape recovery.  
  Abstract Among all filtering techniques, those based exclu- sively on image level sets (geometric flows) have proven to be the less sensitive to the nature of noise and the most contrast preserving. A common feature to existent curvature flows is that they penalize high curvature, regardless of the curve regularity. This constitutes a major drawback since curvature extreme values are standard descriptors of the contour geometry. We argue that an operator designed with shape recovery purposes should include a term penalizing irregularity in the curvature rather than its magnitude. To this purpose, we present a novel geometric flow that includes a function that measures the degree of local irregularity present in the curve. A main advantage is that it achieves non-trivial steady states representing a smooth model of level curves in a noisy image. Performance of our approach is compared to classical filtering techniques in terms of quality in the restored image/shape and asymptotic behavior. We empirically prove that our approach is the technique that achieves the best compromise between image quality and evolution stabilization.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ GiR2004b Serial 491  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: