|   | 
Details
   web
Record
Author (up) Tao Wu; Kai Wang; Chuanming Tang; Jianlin Zhang
Title Diffusion-based network for unsupervised landmark detection Type Journal Article
Year 2024 Publication Knowledge-Based Systems Abbreviated Journal
Volume 292 Issue Pages 111627
Keywords
Abstract Landmark detection is a fundamental task aiming at identifying specific landmarks that serve as representations of distinct object features within an image. However, the present landmark detection algorithms often adopt complex architectures and are trained in a supervised manner using large datasets to achieve satisfactory performance. When faced with limited data, these algorithms tend to experience a notable decline in accuracy. To address these drawbacks, we propose a novel diffusion-based network (DBN) for unsupervised landmark detection, which leverages the generation ability of the diffusion models to detect the landmark locations. In particular, we introduce a dual-branch encoder (DualE) for extracting visual features and predicting landmarks. Additionally, we lighten the decoder structure for faster inference, referred to as LightD. By this means, we avoid relying on extensive data comparison and the necessity of designing complex architectures as in previous methods. Experiments on CelebA, AFLW, 300W and Deepfashion benchmarks have shown that DBN performs state-of-the-art compared to the existing methods. Furthermore, DBN shows robustness even when faced with limited data cases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ WWT2024 Serial 4024
Permanent link to this record