toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title A transformer model for boundary detection in continuous sign language Type Journal Article
  Year 2024 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume Issue Pages  
  Keywords  
  Abstract Sign Language Recognition (SLR) has garnered significant attention from researchers in recent years, particularly the intricate domain of Continuous Sign Language Recognition (CSLR), which presents heightened complexity compared to Isolated Sign Language Recognition (ISLR). One of the prominent challenges in CSLR pertains to accurately detecting the boundaries of isolated signs within a continuous video stream. Additionally, the reliance on handcrafted features in existing models poses a challenge to achieving optimal accuracy. To surmount these challenges, we propose a novel approach utilizing a Transformer-based model. Unlike traditional models, our approach focuses on enhancing accuracy while eliminating the need for handcrafted features. The Transformer model is employed for both ISLR and CSLR. The training process involves using isolated sign videos, where hand keypoint features extracted from the input video are enriched using the Transformer model. Subsequently, these enriched features are forwarded to the final classification layer. The trained model, coupled with a post-processing method, is then applied to detect isolated sign boundaries within continuous sign videos. The evaluation of our model is conducted on two distinct datasets, including both continuous signs and their corresponding isolated signs, demonstrates promising results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ RKE2024 Serial 4016  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: