toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author Adarsh Tiwari; Sanket Biswas; Josep Llados edit  url
  Title Can Pre-trained Language Models Help in Understanding Handwritten Symbols? Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14193 Issue Pages 199–211  
  Keywords (up)  
  Abstract The emergence of transformer models like BERT, GPT-2, GPT-3, RoBERTa, T5 for natural language understanding tasks has opened the floodgates towards solving a wide array of machine learning tasks in other modalities like images, audio, music, sketches and so on. These language models are domain-agnostic and as a result could be applied to 1-D sequences of any kind. However, the key challenge lies in bridging the modality gap so that they could generate strong features beneficial for out-of-domain tasks. This work focuses on leveraging the power of such pre-trained language models and discusses the challenges in predicting challenging handwritten symbols and alphabets.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TBL2023 Serial 3908  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: