toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Sergi Garcia Bordils; Dimosthenis Karatzas; Marçal Rusiñol edit  url
  Title Accelerating Transformer-Based Scene Text Detection and Recognition via Token Pruning Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14192 Issue Pages 106-121  
  Keywords Scene Text Detection; Scene Text Recognition; Transformer Acceleration  
  Abstract Scene text detection and recognition is a crucial task in computer vision with numerous real-world applications. Transformer-based approaches are behind all current state-of-the-art models and have achieved excellent performance. However, the computational requirements of the transformer architecture makes training these methods slow and resource heavy. In this paper, we introduce a new token pruning strategy that significantly decreases training and inference times without sacrificing performance, striking a balance between accuracy and speed. We have applied this pruning technique to our own end-to-end transformer-based scene text understanding architecture. Our method uses a separate detection branch to guide the pruning of uninformative image features, which significantly reduces the number of tokens at the input of the transformer. Experimental results show how our network is able to obtain competitive results on multiple public benchmarks while running at significantly higher speeds.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GKR2023a Serial 3907  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: