toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Kunal Biswas; Palaiahnakote Shivakumara; Umapada Pal; Tong Lu; Michel Blumenstein; Josep Llados edit  url
  Title Classification of aesthetic natural scene images using statistical and semantic features Type Journal Article
  Year 2023 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 82 Issue 9 Pages 13507-13532  
  Abstract Aesthetic image analysis is essential for improving the performance of multimedia image retrieval systems, especially from a repository of social media and multimedia content stored on mobile devices. This paper presents a novel method for classifying aesthetic natural scene images by studying the naturalness of image content using statistical features, and reading text in the images using semantic features. Unlike existing methods that focus only on image quality with human information, the proposed approach focuses on image features as well as text-based semantic features without human intervention to reduce the gap between subjectivity and objectivity in the classification. The aesthetic classes considered in this work are (i) Very Pleasant, (ii) Pleasant, (iii) Normal and (iv) Unpleasant. The naturalness is represented by features of focus, defocus, perceived brightness, perceived contrast, blurriness and noisiness, while semantics are represented by text recognition, description of the images and labels of images, profile pictures, and banner images. Furthermore, a deep learning model is proposed in a novel way to fuse statistical and semantic features for the classification of aesthetic natural scene images. Experiments on our own dataset and the standard datasets demonstrate that the proposed approach achieves 92.74%, 88.67% and 83.22% average classification rates on our own dataset, AVA dataset and CUHKPQ dataset, respectively. Furthermore, a comparative study of the proposed model with the existing methods shows that the proposed method is effective for the classification of aesthetic social media images.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ BSP2023 Serial 3873  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: