toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Asma Bensalah; Antonio Parziale; Giuseppe De Gregorio; Angelo Marcelli; Alicia Fornes; Josep Llados edit  url
doi  openurl
  Title I Can’t Believe It’s Not Better: In-air Movement for Alzheimer Handwriting Synthetic Generation Type Conference Article
  Year 2023 Publication 21st International Graphonomics Conference Abbreviated Journal  
  Volume Issue Pages 136–148  
  Abstract During recent years, there here has been a boom in terms of deep learning use for handwriting analysis and recognition. One main application for handwriting analysis is early detection and diagnosis in the health field. Unfortunately, most real case problems still suffer a scarcity of data, which makes difficult the use of deep learning-based models. To alleviate this problem, some works resort to synthetic data generation. Lately, more works are directed towards guided data synthetic generation, a generation that uses the domain and data knowledge to generate realistic data that can be useful to train deep learning models. In this work, we combine the domain knowledge about the Alzheimer’s disease for handwriting and use it for a more guided data generation. Concretely, we have explored the use of in-air movements for synthetic data generation.  
  Address Evora; Portugal; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG Approved no  
  Call Number Admin @ si @ BPG2023 Serial 3838  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: